Skip to main content
Advanced Search

Filters: Tags: {"scheme":"None"} (X) > partyWithName: U.S. Geological Survey - ScienceBase (X) > Extensions: ArcGIS Service Definition (X) > Types: Citation (X)

24 results (17ms)   

View Results as: JSON ATOM CSV
thumbnail
The data are .csv files of tagged sea otter re-sighting locations (henceforth, resights) collected in the field using a combination of VHF radio telemetry and direct observation using high powered (80x) telescopes. Sea otters were tracked by shore based observers from the date of tagging until the time of radio battery failure or the animal’s death, whichever comes first. The frequency of re-sighting was opportunistic, depending on logistical factors such as coastal access, but generally ranged from daily to weekly. Location coordinates are reported as X and Y coordinates in the projection/datum California Teale-Albers NAD 1927. Each file contains resight data for one individual sea otter collected over a period...
thumbnail
The U.S. Geological Survey (USGS) is providing online maps of water-table and potentiometric-surface altitude in the upper glacial, Magothy, Jameco, Lloyd, and North Shore aquifers on Long Island, New York, April–May 2016. Also provided is a depth-to-water map for Long Island, New York, April–May 2016. The USGS makes these maps and geospatial data available as REST Open Map Services (as well as HTTP, JSON, KML, and shapefile), so end-users can consume them on mobile and web clients. A companion report, U.S. Geological Survey Scientific Investigations Map 3398 (Como and others, 2018; https://doi.org/10.3133/sim3398) further describes data collection and map preparation and presents 68x22 in. Portable Document...
thumbnail
A digital dataset of the geomorphology of the Lower Mississippi River Valley in Missouri, Kentucky, Arkansas, Tennessee, Louisiana, and Mississippi was developed from Roger T. Saucier’s “Geomorphology and Quaternary Geologic History of the Lower Mississippi Valley, Volumes I and II” (1994) as part of the Mississippi Alluvial Plain (MAP) Regional Water Availability Study. The maps included in the 1994 reports provide a comprehensive overview of the previously misunderstood alluvial valley geology and characterize twenty-nine Pleistocene and Holocene alluvial deposits, such as point bars, abandoned channels, backswamps, and natural levees. Each map was georeferenced to North American Datum 1983 and projected to USA...
Categories: Data; Types: ArcGIS REST Map Service, ArcGIS Service Definition, Citation, Downloadable, Map Service; Tags: Alluvial Fan, Apron, Arkansas, Arkansas, Arkansas River, All tags...
thumbnail
The U.S. Geological Survey (USGS) is providing online maps of water-table and potentiometric-surface altitude in the upper glacial, Magothy, Jameco, Lloyd, and North Shore aquifers on Long Island, New York, April–May 2016. Also provided is a depth-to-water map for Long Island, New York, April–May 2016. The USGS makes these maps and geospatial data available as REST Open Map Services (as well as HTTP, JSON, KML, and shapefile), so end-users can consume them on mobile and web clients. A companion report, U.S. Geological Survey Scientific Investigations Map 3398 (Como and others, 2018; https://doi.org/10.3133/sim3398) further describes data collection and map preparation and presents 68x22 in. Portable Document...
thumbnail
The U.S. Geological Survey (USGS) is providing an online map of water-table altitude contours in the upper glacial and Magothy aquifers on Long Island, New York, April-May 2013. USGS serves this map and geospatial data as a REST Open Map Service (as well as HTTP, JSON, KML, and shapefile), so end-users can use the map and data on mobile and web clients. A companion report, U.S. Geological Survey Scientific Investigations Map 3326 (Como and others, 2015; http://dx.doi.org/10.3133/sim3326) further describes data collection and map preparation and presents 68x22 in. PDF versions, 4 sheets, scale 1:125,000. This polyline shapefile consists of digital contours that represent the water table altitude in the upper...
thumbnail
The U.S. Geological Survey (USGS) is providing an online map of stream and lake gage water level measurements on Long Island, New York, April-May 2013. USGS serves this map and geospatial data as a REST Open Map Service (as well as HTTP, JSON, KML, and shapefile), so end-users can use the map and data on mobile and web clients. A companion report, U.S. Geological Survey Scientific Investigations Map 3326 (Como and others, 2015; http://dx.doi.org/10.3133/sim3326) further describes data collection and map preparation and presents 68x22 in. PDF versions, 4 sheets, scale 1:125,000. Continuous records of water level altitude at 16 U.S. Geological Survey (USGS) streamgaging stations (15 streams and...
thumbnail
​ The U.S. Geological Survey (USGS) is providing an online map of depth to water measurements in the upper glacial and Magothy aquifers on Long Island, New York, April-May 2013. USGS serves this map and geospatial data as a REST Open Map Service (as well as HTTP, JSON, KML, and shapefile), so end-users can use the map and data on mobile and web clients. A companion report, U.S. Geological Survey Scientific Investigations Map 3326 (Como and others, 2015; http://dx.doi.org/10.3133/sim3326) further describes data collection and map preparation and presents 68x22 in. PDF versions, 4 sheets, scale 1:125,000. The depth to water table was measured at 335 groundwater monitoring wells (observation and...
thumbnail
The U.S. Geological Survey (USGS) is providing online maps of water-table and potentiometric-surface altitude in the upper glacial, Magothy, Jameco, Lloyd, and North Shore aquifers on Long Island, New York, April–May 2016. Also provided is a depth-to-water map for Long Island, New York, April–May 2016. The USGS makes these maps and geospatial data available as REST Open Map Services (as well as HTTP, JSON, KML, and shapefile), so end-users can consume them on mobile and web clients. A companion report, U.S. Geological Survey Scientific Investigations Map 3398 (Como and others, 2018; https://doi.org/10.3133/sim3398) further describes data collection and map preparation and presents 68x22 in. Portable Document...
thumbnail
The U.S. Geological Survey (USGS) is providing an online map of water level measurements in the Magothy and Jameco aquifers on Long Island, New York, April-May 2013. USGS serves this map and geospatial data as a REST Open Map Service (as well as HTTP, JSON, KML, and shapefile), so end-users can use the map and data on mobile and web clients. A companion report, U.S. Geological Survey Scientific Investigations Map 3326 (Como and others, 2015; http://dx.doi.org/10.3133/sim3326) further describes data collection and map preparation and presents 68x22 in. PDF versions, 4 sheets, scale 1:125,000. The potentiometric surface altitude was measured at 70 observation wells and 31 supply wells screened...
thumbnail
The U.S. Geological Survey (USGS) is providing an online map of a continuous depth to water surface for the upper glacial and Magothy aquifers on Long Island, New York, April-May 2013. USGS serves this map and geospatial data as a REST Open Map Service (as well as HTTP, JSON, KML, and shapefile), so end-users can use the map and data on mobile and web clients. A companion report, U.S. Geological Survey Scientific Investigations Map 3326 (Como and others, 2015; http://dx.doi.org/10.3133/sim3326) further describes data collection and map preparation and presents 68x22 in. PDF versions, 4 sheets, scale 1:125,000. The depth to water table was measured at 335 groundwater monitoring wells (observation...
thumbnail
The U.S. Geological Survey (USGS) is providing online maps of water-table and potentiometric-surface altitude in the upper glacial, Magothy, Jameco, Lloyd, and North Shore aquifers on Long Island, New York, April–May 2016. Also provided is a depth-to-water map for Long Island, New York, April–May 2016. The USGS makes these maps and geospatial data available as REST Open Map Services (as well as HTTP, JSON, KML, and shapefile), so end-users can consume them on mobile and web clients. A companion report, U.S. Geological Survey Scientific Investigations Map 3398 (Como and others, 2018; https://doi.org/10.3133/sim3398) further describes data collection and map preparation and presents 68x22 in. Portable Document...
thumbnail
The U.S. Geological Survey (USGS) is providing an online map of potentiometric-surface altitude contours in the Magothy and Jameco aquifers on Long Island, New York, April-May 2013. USGS serves this map and geospatial data as a REST Open Map Service (as well as HTTP, JSON, KML, and shapefile), so end-users can use the map and data on mobile and web clients. A companion report, U.S. Geological Survey Scientific Investigations Map 3326 (Como and others, 2015; http://dx.doi.org/10.3133/sim3326) further describes data collection and map preparation and presents 68x22 in. PDF versions, 4 sheets, scale 1:125,000. This polyline shapefile consists of digital contours that represent the potentiometric-surface...
thumbnail
As part of the Hurricane Sandy Science Plan, the U.S. Geological Survey is expanding National Assessment of Coastal Change Hazards and forecast products to coastal wetlands. The intent is to provide federal, state, and local managers with tools to estimate the vulnerability of coastal wetlands to various factors and to evaluate their ecosystem service potential. For this purpose, the response and resilience of coastal wetlands to physical factors need to be assessed in terms of the ensuing change to their vulnerability and ecosystem services. Edwin B. Forsythe National Wildlife Refuge (EBFNWR), New Jersey, was selected as a pilot study area. As part of this data synthesis effort, hydrodynamic and sediment transport...
thumbnail
The U.S. Geological Survey (USGS) is providing online maps of water-table and potentiometric-surface altitude in the upper glacial, Magothy, Jameco, Lloyd, and North Shore aquifers on Long Island, New York, April–May 2016. Also provided is a depth-to-water map for Long Island, New York, April–May 2016. The USGS makes these maps and geospatial data available as REST Open Map Services (as well as HTTP, JSON, KML, and shapefile), so end-users can consume them on mobile and web clients. A companion report, U.S. Geological Survey Scientific Investigations Map 3398 (Como and others, 2018; https://doi.org/10.3133/sim3398) further describes data collection and map preparation and presents 68x22 in. Portable Document...
thumbnail
The U.S. Geological Survey (USGS) is providing an online map of water level measurements in the Lloyd and North Shore aquifers on Long Island, New York, April-May 2013. USGS serves this map and geospatial data as a REST Open Map Service (as well as HTTP, JSON, KML, and shapefile), so end-users can use the map and data on mobile and web clients. A companion report, U.S. Geological Survey Scientific Investigations Map 3326 (Como and others, 2015; http://dx.doi.org/10.3133/sim3326) further describes data collection and map preparation and presents 68x22 in. PDF versions, 4 sheets, scale 1:125,000. This point shapefile consists of digital points that represent water level altitudes in the Lloyd and...
thumbnail
The U.S. Geological Survey (USGS) is providing online maps of water-table and potentiometric-surface altitude in the upper glacial, Magothy, Jameco, Lloyd, and North Shore aquifers on Long Island, New York, April–May 2016. Also provided is a depth-to-water map for Long Island, New York, April–May 2016. The USGS makes these maps and geospatial data available as REST Open Map Services (as well as HTTP, JSON, KML, and shapefile), so end-users can consume them on mobile and web clients. A companion report, U.S. Geological Survey Scientific Investigations Map 3398 (Como and others, 2018; https://doi.org/10.3133/sim3398) further describes data collection and map preparation and presents 68x22 in. Portable Document...
thumbnail
The U.S. Geological Survey (USGS) is providing online maps of water-table and potentiometric-surface altitude in the upper glacial, Magothy, Jameco, Lloyd, and North Shore aquifers on Long Island, New York, April–May 2016. Also provided is a depth-to-water map for Long Island, New York, April–May 2016. The USGS makes these maps and geospatial data available as REST Open Map Services (as well as HTTP, JSON, KML, and shapefile), so end-users can consume them on mobile and web clients. A companion report, U.S. Geological Survey Scientific Investigations Map 3398 (Como and others, 2018; https://doi.org/10.3133/sim3398) further describes data collection and map preparation and presents 68x22 in. Portable Document...
thumbnail
The U.S. Geological Survey (USGS) is providing online maps of water-table and potentiometric-surface altitude in the upper glacial, Magothy, Jameco, Lloyd, and North Shore aquifers on Long Island, New York, April–May 2016. Also provided is a depth-to-water map for Long Island, New York, April–May 2016. The USGS makes these maps and geospatial data available as REST Open Map Services (as well as HTTP, JSON, KML, and shapefile), so end-users can consume them on mobile and web clients. A companion report, U.S. Geological Survey Scientific Investigations Map 3398 (Como and others, 2018; https://doi.org/10.3133/sim3398) further describes data collection and map preparation and presents 68x22 in. Portable Document...
thumbnail
This raster depicts the percentage of lithological calcium oxide (CaO) content in surface or near surface geology. We derived these rasters by calculating the average percent CaO content for each map unit in combined surficial-bedrock geologic maps. We used state geologic maps (Preliminary Integrated Geologic Map Databases for the United States, Open File Reports 2004-1355, 2005-1305, 2005-1323, 2005-1324, 2005-1325, 2005-1351, and 2006-1272), which depict surficial geology instead of bedrock when the surficial layers are sufficiently deep. For the state maps that do not incorporate surficial geology (i.e., midwestern states), we overlaid surficial geologic map units with thicknesses greater than 100 feet (from...
thumbnail
The U.S. Geological Survey (USGS) is providing online maps of water-table and potentiometric-surface altitude in the upper glacial, Magothy, Jameco, Lloyd, and North Shore aquifers on Long Island, New York, April–May 2016. Also provided is a depth-to-water map for Long Island, New York, April–May 2016. The USGS makes these maps and geospatial data available as REST Open Map Services (as well as HTTP, JSON, KML, and shapefile), so end-users can consume them on mobile and web clients. A companion report, U.S. Geological Survey Scientific Investigations Map 3398 (Como and others, 2018; https://doi.org/10.3133/sim3398) further describes data collection and map preparation and presents 68x22 in. Portable Document...


map background search result map search result map Geochemical Characteristics of the Conterminous United States: % CaO Geospatial Data Collected from Tagged Sea Otters in Central California, 1998-2012 Depth to Water Data in the Upper Glacial and Magothy Aquifers, April-May 2013 Potentiometric Surface Contours of the Magothy and Jameco Aquifers, April-May 2013 Water Level Data in the Magothy and Jameco Aquifers, April-May 2013 Water Level Data in the Lloyd and North Shore Aquifers, April-May 2013 Stream and Lake Average Water-Level Altitudes, April-May 2013 Contours of Water Table Altitudes in the Upper Glacial and Magothy Aquifers, April-May 2013 Depth to Water Raster on Long Island, New York, 2013 Inferred hydrodynamic residence time in salt marsh units in Edwin B. Forsythe National Wildlife Refuge, New Jersey Depth to Water Data in the Upper Glacial and Magothy Aquifers, April-May 2016 Depth to the Water Raster on Long Island, New York, April–May 2016 Potentiometric Surface Contours of the Lloyd and North Shore Aquifers, April-May 2016 Water Level Data in the Lloyd and North Shore Aquifers, April-May 2016 Potentiometric Surface Contours of the Magothy and Jameco Aquifers, April-May 2016 Water Level Data in the Magothy and Jameco Aquifers, April-May 2016 Water Table Contours in the Upper Glacial and Magothy Aquifers, April-May 2016 Stream and Lake Average Water-Level Altitudes, April-May 2016 Water Table Data in the Upper Glacial and Magothy Aquifers, April-May 2016 Digital Dataset for the Geomorphology of the Lower Mississippi River Valley in Missouri, Kentucky, Arkansas, Tennessee, Louisiana, and Mississippi Inferred hydrodynamic residence time in salt marsh units in Edwin B. Forsythe National Wildlife Refuge, New Jersey Stream and Lake Average Water-Level Altitudes, April-May 2013 Stream and Lake Average Water-Level Altitudes, April-May 2016 Water Table Contours in the Upper Glacial and Magothy Aquifers, April-May 2016 Depth to Water Data in the Upper Glacial and Magothy Aquifers, April-May 2016 Water Table Data in the Upper Glacial and Magothy Aquifers, April-May 2016 Water Level Data in the Magothy and Jameco Aquifers, April-May 2013 Water Level Data in the Magothy and Jameco Aquifers, April-May 2016 Potentiometric Surface Contours of the Magothy and Jameco Aquifers, April-May 2016 Potentiometric Surface Contours of the Magothy and Jameco Aquifers, April-May 2013 Water Level Data in the Lloyd and North Shore Aquifers, April-May 2013 Water Level Data in the Lloyd and North Shore Aquifers, April-May 2016 Contours of Water Table Altitudes in the Upper Glacial and Magothy Aquifers, April-May 2013 Potentiometric Surface Contours of the Lloyd and North Shore Aquifers, April-May 2016 Depth to Water Data in the Upper Glacial and Magothy Aquifers, April-May 2013 Depth to Water Raster on Long Island, New York, 2013 Depth to the Water Raster on Long Island, New York, April–May 2016 Geospatial Data Collected from Tagged Sea Otters in Central California, 1998-2012 Digital Dataset for the Geomorphology of the Lower Mississippi River Valley in Missouri, Kentucky, Arkansas, Tennessee, Louisiana, and Mississippi Geochemical Characteristics of the Conterminous United States: % CaO