Skip to main content
Advanced Search

Filters: Tags: CASC (X)

531 results (15ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
Climate change influences apex predators in complex ways, due to their important trophic position, capacity for resource plasticity, and sensitivity to numerous anthropogenic stressors. Bald eagles, an ecologically and culturally significant apex predator, congregate seasonally in high densities on salmon spawning rivers across the Pacific Northwest. One of the largest eagle concentrations is in the Skagit River watershed, which connects the montane wilderness of North Cascades National Park to the Puget Sound. Using multiple long-term datasets, we evaluated the relationship between local bald eagle abundance, chum and coho salmon availability and phenology, and the number and timing of flood events in the Skagit...
thumbnail
Scientists, planners, policy makers and other decision-makers in the South Central U.S. want to understand the potential impacts of changes in climate, precipitation, and land-use patterns on natural and cultural resources. Though the potential impacts of climate change can be modeled to help decision-makers plan for future conditions, these models rarely incorporate changes in land-use that may occur. Climate change and land-use change are often linked, as shifts in precipitation and temperature can alter patterns in human land-use activities, such as agriculture. This project sought to address this gap by developing new software tools that enable stakeholders to quickly develop custom, climate-sensitive land-use...
thumbnail
Determining which species, habitats, or ecosystems are most vulnerable to climate change enables resource managers to better set priorities for conservation action. To address the need for information on vulnerability, this research project aimed to leverage the expertise of university partners to inform the North Central Climate Science Center on how to best assess the vulnerability of elements of biodiversity to climate and land use change in order to inform the development and implementation of management options. Outcomes from this activity were expected to include 1) a framework for modeling vegetation type and species response to climate and land use change, 2) an evaluation of existing alternative vegetation...
thumbnail
Appropriate ecological indicators of climate change can be used to measure concurrent changes in ecological systems, inform management decisions, and potentially to project the consequences of climate change. However, many of the available indicators for North American birds do not account for imperfect observation. We proposed to use correlated-detection occupancy models to develop indicators from the North American Breeding Bird Survey data. The indicators were used to test hypotheses regarding changes in range and distribution of breeding birds. The results will support the Northeast Climate Science Center’s Science Agenda, including the science priority: researching ecological vulnerability and species response...
thumbnail
The South Central U.S. is one of the main agricultural regions in North America: annual agricultural production is valued at more than $44 billion dollars. However, as climate conditions change, the region is experiencing more frequent and severe droughts, with significant impacts on agriculture and broader consequences for land management. For example, in 2011 drought caused an estimated $7.6 billion in agricultural losses in Texas and an additional $1.6 billion in Oklahoma. Although there are many drought monitoring tools available, most of these tools were developed without input from the stakeholders, such as farmers and ranchers, who are intended to use them. The goal of this project was to assess the information...
thumbnail
Covering 120 million acres across 14 western states and 3 Canadian provinces, sagebrush provides critical habitat for species such as pronghorn, mule deer, and sage-grouse – a species of conservation concern. The future of these and other species is closely tied to the future of sagebrush. Yet this important ecosystem has already been affected by fire, invasive species, land use conversion, and now, climate change. In the western U.S., temperatures are rising and precipitation patterns are changing. However, there is currently a limited ability to anticipate the impacts of climate change on sagebrush. Current methods suffer from a range of weakness that limits the reliability of results. In fact, the current uncertainty...
thumbnail
The goal of this project was to inform implementation of the Greater Yellowstone Coordinating Committee (GYCC) Whitebark Pine (WBP) subcommittee’s “WBP Strategy” based on climate science and ecological forecasting. Project objectives were to: 1. Forecast ecosystem processes and WBP habitat suitability across the Greater Yellowstone Area (GYA) under alternative IPCC future scenarios; 2. Improve understanding of possible response to future climate by analyzing WBP/climate relationships in past millennia; 3. Develop WBP management alternatives; 4. Evaluate the alternatives under IPCC future scenarios in terms of WBP goals, ecosystem services, and costs of implementation; and 5. Draw recommendations for implementation...
thumbnail
The sky island forests of the southwestern United States are one of the most diverse temperate forest ecosystems in the world, providing key habitat for migrating and residential species alike. Black bear, bighorn sheep, mule deer, and wild turkey are just a few of the species found in these isolated mountain ecosystems that rise out of the desert landscape. However, recent droughts have crippled these ecosystems, causing significant tree death. Climate predictions suggest that this region will only face hotter and drier conditions in the future, potentially stressing these ecosystems even further. Simple models predict that vegetation will move to cooler and wetter locations in response to this warming. However,...
thumbnail
There is growing evidence that headwater stream ecosystems are especially vulnerable to changing climate and land use, but managers are challenged by the need to address these threats at a landscape scale, often through coordination with multiple management agencies and landowners. This project sought to provide an example of cooperative landscape decision-making by addressing the conservation of headwater stream ecosystems in the face of climate change at the watershed scale. Predictive models were built for critical resources to examine the effects of the potential alternative actions on the objectives, taking account of climate effects and examining whether there are key uncertainties that impede decision making....
thumbnail
The rugged landscapes of northern Idaho and western Montana support biodiverse ecosystems, and provide a variety of natural resources and services for human communities. However, the benefits provided by these ecosystems may be at risk as changing climate magnifies existing stressors and allows new stressors to emerge. Preparation for and response to these potential changes can be most effectively addressed through multi-stakeholder partnerships, evaluating vulnerability of important resources to climate change, and developing response and preparation strategies for managing key natural resources in a changing world. This project supports climate-smart conservation and management across forests of northern Idaho...
thumbnail
Northeastern boreal forests are an important habitat type for many wildlife species, including migratory birds and moose. These animals play vital roles in the boreal forest ecosystem, are a source of pleasure for bird and wildlife watchers, and contribute to tourism revenue for many communities. However, moose and migratory birds are thought to be particularly vulnerable to the impacts of climate change. For example, in New York’s Adirondack Park system, five species of boreal birds have shown occupancy declines of 15% or more. Meanwhile, moose are threatened by winter ticks that thrive in warmer climates and spread disease. A 2018 New York Department of Environmental Conservation (NYDEC) report found that there...
thumbnail
The South Central U.S. encompasses a wide range of ecosystem types and precipitation patterns. Average annual precipitation is less than 10 inches in northwest New Mexico but can exceed 60 inches further east in Louisiana. Much of the region relies on warm-season convective precipitation – that is, highly localized brief but intense periods of rainfall that are common in the summer. This type of precipitation is a significant driver of climate and ecosystem function in the region, but it is also notoriously difficult to predict since it occurs at such small spatial and temporal scales. While global climate models are helpful for understanding and predicting large-scale precipitation trends, they often do not capture...
thumbnail
Hawaiʻi is considered a worldwide biodiversity hotspot, with nearly 90 percent of its native plants found nowhere else in the world. However, about half of these native plants are imperiled by threats including human development, non-native species, and climate change. Through this project, scientists modeled the relative vulnerability of over 1,000 native plant species to the effects of climate change. A panel of experts in Hawaiian plant species assisted with the development of the model and verified its results. From the model, researchers were able to develop a vulnerability score for each plant species and identify categories of species with high, medium, and low vulnerability to climate change. This information...
thumbnail
Landscape-scale conservation of threatened and endangered species is often challenged by multiple, sometimes conflicting, land uses. In Hawaiʻi, efforts to conserve native forests have come into conflict with objectives to sustain non-native game mammals, such as feral pigs, goats, and deer, for subsistence and sport hunting. Maintaining stable or increasing game populations represents one of the greatest obstacles to the recovery of Hawaii’s 425 threatened and endangered plant species. Many endemic Hawaiian species have declined and become endangered as a result of herbivorous non-native game mammals. Meanwhile, other environmental changes, including the spread of invasive grasses and changing precipitation patterns...
thumbnail
The Pacific Ocean is home to a number of low-lying, coastal national parks and wildlife refuges. These public lands are situated on coral reef-lined islands that are susceptible to inundation from sea-level rise and flooding during storms. Because of their low-lying nature and limited availability of space, ecosystems, cultural resources, and infrastructure on these islands are particularly vulnerable to flooding. Sea-level rise will further exacerbate the impact of storms on island parks and refuges by increasing wave-driven coastal flooding, with consequences for ecological and human communities alike. However, most assessments of future conditions at coastal national parks and refuges consider only permanent...
thumbnail
The beaches of the Hawaiian Islands attract nearly 9 million visitors each year, who inject around $15.6 billion into the state’s economy and support almost 200,000 jobs. Beyond their economic importance, Hawaiian beaches are also culturally and ecologically valuable. However, climate change driven sea-level rise is causing many beaches to disappear, endangering property, infrastructure, and critical habitats. The goal of this project was to develop a method for forecasting erosion-vulnerable beach areas that could be used in coastal management planning. Researchers focused on the island of Kauaʻi, modeling beach response to rising sea level over the next century and producing maps that provide information about...
thumbnail
The Jago, Okpilak, and Hulahula rivers in the Arctic are heavily glaciated waterways that are important for fish and wildlife as well as human activities including the provision of food, recreation, and, potentially, resource extraction on the coastal plain. If current glacial melting trends continue, most of the ice in these rivers will disappear in the next 50-100 years. Because of their importance to human and natural communities, it is critical to understand how these rivers and their surrounding environments will be affected by climate change and glacier loss. The overarching goal of this project was to research (1) the amount of river water, sediment, nutrients, and organic matter in the Jago, Okpilak, and...
thumbnail
Coastal wetlands and the many beneficial services they provide (e.g., purifying water, buffering storm surge, providing habitat) are changing and disappearing as a result of sea-level rise brought about by climate change. Scientists have developed a wealth of information and resources to predict and aid decision-making related to sea-level rise. However, while some of these resources are easily accessible by coastal managers, many others require more expert knowledge to understand or utilize. The goal of this project was to collate science and models pertaining to the effects of sea-level on coastal wetlands into a format that would be accessible and useful to resource managers. Researchers conducted training sessions...
thumbnail
In southwestern Colorado, land managers anticipate the impacts of climate change to include higher temperatures, more frequent and prolonged drought, accelerated snowmelt, larger and more intense fires, more extreme storms, and the spread of invasive species. These changes put livelihoods, ecosystems, and species at risk. Focusing on communities in southwestern Colorado’s San Juan and Gunnison river basins, this project will expand opportunities for scientists, land managers, and affected residents to identify actions that can support resilience and adaptation in the face of changing climate conditions. This project builds on the project “Building Social and Ecological Resilience to Climate Change in southwestern...
thumbnail
Researchers with the North Central Climate Science Center have made substantial progress in assessing the impacts of climate and land use change on wildlife and ecosystems across the region. Building on this progress, researchers will work with stakeholders to identify adaptation strategies and inform resource management in the areas that will be most affected by changing conditions. There are several components of this project. First, researchers will use the Department of Interior “resource briefs” as a mechanism to communicate information to resource managers on climate and land use change and their impacts to resources. These briefs will support coordinated management of ecosystems that contain public, private,...


map background search result map search result map A Handbook for Resource Managers to Understand and Utilize Sea-Level Rise and Coastal Wetland Models The Impacts of Glacier Change on the Jago, Okpilak, and Hulahula Rivers in the Arctic Assessing the Vulnerability of Vegetation to Future Climate in the North Central U.S. Projecting the Future of Headwater Streams to inform Management Decisions Establishing Climate Change Vulnerability Rankings for Hawaiian Native Plants Science and Forecasting to Inform Implementation of the Greater Yellowstone Coordinating Committee’s Whitebark Pine Management Strategy Predicting Sky Island Forest Vulnerability to Climate Change: Fine Scale Climate Variability, Drought Tolerance, and Fire Response Improving Representation of Extreme Precipitation Events in Regional Climate Models Developing Effective Drought Monitoring Tools for Farmers and Ranchers in the South Central U.S. Moving from Awareness to Action: Informing Climate Change Vulnerability Assessments and Adaptation Planning for Idaho and Montana National Forests Forecasting Beach Loss from Sea-Level Rise on the Island of Kauaʻi Avian Indicators of Climate Change Based on the North American Breeding Bird Survey Forecasting Future Changes in Sagebrush Distribution and Abundance Building a Decision-Support Tool for Assessing the Impacts of Climate and Land Use  Change on Ecological Processes Integrating Climate Change Research and Planning to Inform Wildlife Conservation in the Boreal Forests of the Northeastern U.S. Building Social and Ecological Resilience to Climate Change in Southwestern Colorado: Phase 2 Foundational Science Area: Climate Adaptation Strategies for Wildlife and Habitats in the North Central U.S. Managing Non-native Game Mammals to Reduce Future Conflicts with Native Plant Conservation in Hawai‘i The Impact of Climate Change and Sea-Level Rise on Future Flooding of Coastal Parks and Refuges in Hawaiʻi and the U.S. Affiliated Pacific Islands Forecasting Beach Loss from Sea-Level Rise on the Island of Kauaʻi Integrating Climate Change Research and Planning to Inform Wildlife Conservation in the Boreal Forests of the Northeastern U.S. Predicting Sky Island Forest Vulnerability to Climate Change: Fine Scale Climate Variability, Drought Tolerance, and Fire Response Building Social and Ecological Resilience to Climate Change in Southwestern Colorado: Phase 2 Establishing Climate Change Vulnerability Rankings for Hawaiian Native Plants Moving from Awareness to Action: Informing Climate Change Vulnerability Assessments and Adaptation Planning for Idaho and Montana National Forests The Impacts of Glacier Change on the Jago, Okpilak, and Hulahula Rivers in the Arctic Forecasting Future Changes in Sagebrush Distribution and Abundance Improving Representation of Extreme Precipitation Events in Regional Climate Models Building a Decision-Support Tool for Assessing the Impacts of Climate and Land Use  Change on Ecological Processes Foundational Science Area: Climate Adaptation Strategies for Wildlife and Habitats in the North Central U.S. Developing Effective Drought Monitoring Tools for Farmers and Ranchers in the South Central U.S. A Handbook for Resource Managers to Understand and Utilize Sea-Level Rise and Coastal Wetland Models Projecting the Future of Headwater Streams to inform Management Decisions Assessing the Vulnerability of Vegetation to Future Climate in the North Central U.S. Science and Forecasting to Inform Implementation of the Greater Yellowstone Coordinating Committee’s Whitebark Pine Management Strategy Avian Indicators of Climate Change Based on the North American Breeding Bird Survey The Impact of Climate Change and Sea-Level Rise on Future Flooding of Coastal Parks and Refuges in Hawaiʻi and the U.S. Affiliated Pacific Islands