Skip to main content
Advanced Search

Filters: Tags: Disturbance (X) > partyWithName: U.S. Geological Survey - ScienceBase (X)

66 results (62ms)   

View Results as: JSON ATOM CSV
thumbnail
This release contains Active Layer Thickness (ALT) and Organic Layer Thickness (OLT) measurements measured along transects in Alaska, 2015. Site condition information in terms of wildfire burns is also included.
thumbnail
This data set includes the relative production scenarios for eight (8) grass species based on linear models from Epstein, et al. (1998). We selected two indicator species for each community: shortgrass prairie: blue grama (Bouteloua gracilis; BOGR) and buffalo grass (Bouteloua dactyloides; BODA); mixedgrass prairie: sideoats grama (Bouteloua curtipendula; BOCU) and little bluestem (Schizachyrium scoparium; SCSC); tallgrass prairie: big bluestem (Andropogon gerardii; ANGE) and Indiangrass (Sorghastrum nutans; SONU); and semiarid grasslands: black grama (Bouteloua eriopoda; BOER) and tobosagrass (Pleuraphis mutica; PLMU). Soil texture (percent by weight) came from the Earth Systems Science Center (2008) which provided...
thumbnail
LANDFIRE (LF) disturbance products are developed to provide temporal and spatial information related to landscape change. Historical Disturbance (HDist) is developed from the base annual LF disturbance products, and attribute code system, to represent the history of disturbance for a 10-year span. Each year's disturbance scenarios are checked against time relevant LF vegetation products to check for logical inconsistencies. Errant codes are flagged and updated to a discard code with the remaining disturbance types cross-walked/aggregated to Fuel Disturbance (FDist) types. HDist includes the year of disturbance that is recorded for that pixel. In LF 2022, the time since disturbance code is the same for both HDist...
thumbnail
Geophysical measurements were collected by the U.S. Geological Survey (USGS) at five sites in Interior Alaska in September 2021 for the purposes of imaging permafrost structure and quantifying variations in subsurface moisture content in relation to thaw features. Borehole nuclear magnetic resonance (NMR) data were collected at two sites in order to determine liquid water content at depth in shallow boreholes. NMR data were collected in a 2.25 m-deep borehole at the North Star golf course adjacent to one of the ERT profiles, and in another two 1.625 m-deep boreholes adjacent to Big Trail Lake where previous NMR measurements were made in 2019 and 2020.
thumbnail
LANDFIRE (LF) disturbance products are developed to provide temporal and spatial information related to landscape change. LF 2022 Fuel Disturbance (FDist) uses the latest Annual Disturbance products from the effective disturbance years of 2013 to 2022. FDist is created from LF 2022 Historical Disturbance (HDist) which in turn aggregates the Annual Disturbance products. FDist groups similar disturbance types, severities and time since disturbance categories which represent disturbance scenarios within the fuel environment. FDist is used in conjunction with Fuel Vegetation Type (FVT), Cover (FVC), and Height (FVH) to calculate Canopy Cover (CC), Canopy Height (CH), Canopy Bulk Density (CBD), Canopy Base Height (CBH),...
thumbnail
This data release presents observations of riparian vegetation, topography, sediment quality, and river corridor geomorphology in four river reaches of the Lower Virgin River extending downstream 62 river kilometers (rkm) from near the town of Littlefield (AZ) and the Arizona-Nevada border at rkm 119. Methods included field observations and analysis of remotely-sensed data before (2010) and after (2011-2012) a 40-year return period flood (December 2010, at the gaging station “Virgin River near Littlefield” (USGS gage #09415000)). The data release includes four .csv files related to field observations: UTM coordinates of field transect locations; vegetation and geomorphology; species codes; and sediment quality....
thumbnail
This data set consists of monthly averages of soil and litter properties. Rows are grouped in the following order: year, month, vegetation type, plot ID. Within a single month five plots were sampled within each of the 2 vegetation types (10 plots total). Columns F+ represent individual measurements.
This data set includes the relative production scenarios for bufflaograss [0.72(Temp) - 0.12(Precip) - 0.04(Sand) + 3.08]; this is the model from Epstein, et al. (1998). Soil texture (percent by weight) came from the Earth Systems Science Center (2008) which provided processed soils data from NRCS (gSSURGO), mean annual temperature (Celsius) and/or mean annual precipitation (millimeters) came from contemporary (1981 - 2010) estimates (Maurer et al. 2002) or a GCM. Global Climate Models (GCM) providing scenarios included: warmer-wetter scenario (CESM1-BGC, RCP4.5, Neale et al., 2010), warmer drier scenario (GISS-E2-R, RCP4.5, Schmidt, 2014), hotter-wetter scenario (Miroc-ESM, RCP8.5, Watanabe et al., 2011), and hotter-drier...
thumbnail
This database contains literature citations and associated summaries pertaining to livestock grazing effects on amphibians and their habitats, with an emphasis on the Oregon spotted frog (Rana pretiosa) and other listed/sensitive wetland-breeding amphibians in the western United States. This is not meant to be an exhaustive list, nor did we perform a systematic meta-analysis; rather, literature records were included based on topical relevance. *HINT: If you are looking for the database SEARCH TOOL, scroll down to 'Attached Files' and download 'Annotated_bibliography_with_search_tool.accdb.' Open the database file to enter the search form.* This data release supersedes Rowe, J.C., Pearl, C.A., Adams, M.J., and McCreary,...
Electrical resistivity tomography (ERT) measurements were collected by the U.S. Geological Survey (USGS) at two sites in Interior Alaska in September 2019 for the purposes of imaging permafrost structure and quantifying variations in subsurface moisture content in relation to thaw features. First, ERT data were collected at Big Trail Lake, a thermokarst lake outside of Fairbanks, Alaska, to quantify permafrost characteristics beneath the lake and across its shorelines. Three 222 m ERT survey lines were collected perpendicular to the North, East, and South shorelines, and two 110 m lines were collected parallel to the southeast and northeast shorelines. Models of electrical resistivity produced from these data revealed...
thumbnail
LANDFIRE (LF) disturbance products are developed to provide temporal and spatial information related to landscape change. LF 2022 Fuel Disturbance (FDist) uses the latest Annual Disturbance products from the effective disturbance years of 2013 to 2022. FDist is created from LF 2022 Historical Disturbance (HDist) which in turn aggregates the Annual Disturbance products. FDist groups similar disturbance types, severities and time since disturbance categories which represent disturbance scenarios within the fuel environment. FDist is used in conjunction with Fuel Vegetation Type (FVT), Cover (FVC), and Height (FVH) to calculate Canopy Cover (CC), Canopy Height (CH), Canopy Bulk Density (CBD), Canopy Base Height (CBH),...
thumbnail
Fire can be a significant driver of permafrost change in boreal landscapes, altering the availability of soil carbon and nutrients that have important implications for future climate and ecological succession. However, not all landscapes are equally susceptible to fire-induced change. As fire frequency is expected to increase in the high latitudes, methods to understand the vulnerability and resilience of different landscapes to permafrost degradation are needed. Geophysical and other field observations reveal details of both near-surface (less than 1 m) and deeper (greater than 1 m) impacts of fire on permafrost along 14 transects that span burned-unburned boundaries in different landscape settings within interior...
thumbnail
Fire can be a significant driver of permafrost change in boreal landscapes, altering the availability of soil carbon and nutrients that have important implications for future climate and ecological succession. However, not all landscapes are equally susceptible to fire-induced change. As fire frequency is expected to increase in the high latitudes, methods to understand the vulnerability and resilience of different landscapes to permafrost degradation are needed. Geophysical and other field observations reveal details of both near-surface (less than 1 m) and deeper (greater than 1 m) impacts of fire on permafrost along 14 transects that span burned-unburned boundaries in different landscape settings within interior...
Geophysical measurements and related field data were collected by the U.S. Geological Survey (USGS) at the Alaska Peatland Experiment (APEX) site in Interior Alaska from 2018 to 2020 to characterize subsurface thermal and hydrologic conditions along a permafrost thaw gradient. The APEX site is managed by the Bonanza Creek LTER (Long Term Ecological Research). In July 2018, soil temperature and moisture sensors were installed at six out of the nine instrument locations (APEX1, APEX2, APEX3, APEX4, APEX7, APEX9). Thermistors (PS103J2, US Sensor, Orange, CA, USA) were placed at depths of 5, 30, 60, 120, and 180 centimeters (cm) with three replicates. Three sites (APEX1, APEX4, APEX9) contained an additional single...
thumbnail
Fire can be a significant driver of permafrost change in boreal landscapes, altering the availability of soil carbon and nutrients that have important implications for future climate and ecological succession. However, not all landscapes are equally susceptible to fire-induced change. As fire frequency is expected to increase in the high latitudes, methods to understand the vulnerability and resilience of different landscapes to permafrost degradation are needed. Geophysical and other field observations reveal details of both near-surface (less than 1 m) and deeper (greater than 1 m) impacts of fire on permafrost along 14 transects that span burned-unburned boundaries in different landscape settings within interior...
thumbnail
LANDFIRE (LF) disturbance products are developed to provide temporal and spatial information related to landscape change. LF 2022 Fuel Disturbance (FDist) uses the latest Annual Disturbance products from the effective disturbance years of 2013 to 2022. FDist is created from LF 2022 Historical Disturbance (HDist) which in turn aggregates the Annual Disturbance products. FDist groups similar disturbance types, severities and time since disturbance categories which represent disturbance scenarios within the fuel environment. FDist is used in conjunction with Fuel Vegetation Type (FVT), Cover (FVC), and Height (FVH) to calculate Canopy Cover (CC), Canopy Height (CH), Canopy Bulk Density (CBD), Canopy Base Height (CBH),...
This data set includes the relative production scenarios for sideoats grama [1.13(Temp) + 0.41(Precip) - 0.004(Precip)^2- 0.07(Sand) - 12.3]; this is the model from Epstein, et al. (1998). Soil texture (percent by weight) came from the Earth Systems Science Center (2008) which provided processed soils data from NRCS (gSSURGO), mean annual temperature (Celsius) and/or mean annual precipitation (millimeters) came from contemporary (1981 - 2010) estimates (Maurer et al. 2002) or a GCM. Global Climate Models (GCM) providing scenarios included: warmer-wetter scenario (CESM1-BGC, RCP4.5, Neale et al., 2010), warmer drier scenario (GISS-E2-R, RCP4.5, Schmidt, 2014), hotter-wetter scenario (Miroc-ESM, RCP8.5, Watanabe et...
This data set includes the relative production scenarios for little bluestem [0.26(Precip) - 4.04]; this is the model from Epstein, et al. (1998). Soil texture (percent by weight) came from the Earth Systems Science Center (2008) which provided processed soils data from NRCS (gSSURGO), mean annual temperature (Celsius) and/or mean annual precipitation (millimeters) came from contemporary (1981 - 2010) estimates (Maurer et al. 2002) or a GCM. Global Climate Models (GCM) providing scenarios included: warmer-wetter scenario (CESM1-BGC, RCP4.5, Neale et al., 2010), warmer drier scenario (GISS-E2-R, RCP4.5, Schmidt, 2014), hotter-wetter scenario (Miroc-ESM, RCP8.5, Watanabe et al., 2011), and hotter-drier scenario (ACCESS...
thumbnail
In response to the 2010 Fourmile Canyon fire near Boulder, Colorado, the U.S. Geological Survey collected data to support investigations into the magnitude and critical drivers of water-quality impairment after wildfire. We analyzed chemistry of stream water, sediment, wildfire ash, soil, dust, and mine waste for metals and other parameters in order to evaluate the effects of legacy mining and wildfire on stream chemistry in the Colorado Front Range, USA. This data release includes data that were published earlier (McCleskey et al., 2012; Murphy et al., 2018).


map background search result map search result map Fire impacts on permafrost in Alaska: Geophysical and other field data collected in 2015 Borehole Nuclear Magnetic Resonance Inverted Models; Alaska, 2015 Electrical Resistivity Tomography Inverted Models; Alaska, 2015 Permafrost Soil Measurements; Alaska, 2015 Permafrost Vegetation Measurements; Alaska, 2015 Effects of Flood Inundation and Invasion by Phalaris arundinacea on Nitrogen Cycling in an Upper Mississippi River Floodplain Forest data Potential productivity and change estimates for eight grassland species to evaluate vulnerability to climate change in the southern Great Plains Riparian vegetation, topography, sediment quality, and river corridor geomorphology in the Lower Virgin River, Nevada and Arizona, before (2010) and after (2011-2012) a 40-year return period flood Chemistry of water, stream sediment, wildfire ash, soil, dust, and mine waste for Fourmile Creek Watershed, Colorado, 2010-2019 Alaska permafrost characterization: Electrical Resistivity Tomography Data & Models from 2019 APEX Soil Temperature and Moisture Data from 2018-2020 Alaska permafrost characterization: Borehole Nuclear Magnetic Resonance (NMR) data collected in 2021 LANDFIRE 2022 Fuel Disturbance (FDist) AK LANDFIRE 2022 Fuel Disturbance (FDist) Puerto Rico US Virgin Islands LANDFIRE 2022 Historical Disturbance (HDist) HI LANDFIRE 2022 Fuel Disturbance (FDist) HI APEX Soil Temperature and Moisture Data from 2018-2020 Alaska permafrost characterization: Borehole Nuclear Magnetic Resonance (NMR) data collected in 2021 Chemistry of water, stream sediment, wildfire ash, soil, dust, and mine waste for Fourmile Creek Watershed, Colorado, 2010-2019 Riparian vegetation, topography, sediment quality, and river corridor geomorphology in the Lower Virgin River, Nevada and Arizona, before (2010) and after (2011-2012) a 40-year return period flood Alaska permafrost characterization: Electrical Resistivity Tomography Data & Models from 2019 Borehole Nuclear Magnetic Resonance Inverted Models; Alaska, 2015 Permafrost Soil Measurements; Alaska, 2015 Permafrost Vegetation Measurements; Alaska, 2015 LANDFIRE 2022 Fuel Disturbance (FDist) Puerto Rico US Virgin Islands Fire impacts on permafrost in Alaska: Geophysical and other field data collected in 2015 Electrical Resistivity Tomography Inverted Models; Alaska, 2015 LANDFIRE 2022 Historical Disturbance (HDist) HI LANDFIRE 2022 Fuel Disturbance (FDist) HI Potential productivity and change estimates for eight grassland species to evaluate vulnerability to climate change in the southern Great Plains LANDFIRE 2022 Fuel Disturbance (FDist) AK