Skip to main content
Advanced Search

Filters: Tags: Freezing (X) > Types: Journal Citation (X)

4 results (26ms)   

View Results as: JSON ATOM CSV
Drought and freezing are both known to limit desert plant distributions, but the interaction of these stressors is poorly understood. Drought may increase freezing tolerance in leaves while decreasing it in the xylem, potentially creating a mismatch between water supply and demand. To test this hypothesis, we subjected Larrea tridentata juveniles grown in a greenhouse under well-watered or drought conditions to minimum temperatures ranging from -8 to -24 �C. We measured survival, leaf retention, gas exchange, cell death, freezing point depression and leaf-specific xylem hydraulic conductance (k?). Drought-exposed plants exhibited smaller decreases in gas exchange after exposure to -8 �C compared to well-watered...
Amino acids have been shown to be a potentially significant N source for the alpine sedge, Kobresia myosuroides. We hypothesised that freeze-thaw and dry-rewet events allow this plant species increased access to amino acids by disrupting microbial cells, which decreases the size of competing microbial populations, but increases soil amino acid concentrations. To test this hypothesis, we characterized freeze-thaw and dry-rewet events in the field and simulated them in laboratory experiments on plant-soil microcosms. In one experiment, 15N,13C-[2]-glycine was added to microcosms that had previously been subjected to a freeze-thaw or dry-rewet event, and isotopic concentrations in the plant and microbial fractions...
? This research tested the hypothesis that experimental infrared warming will reduce photosynthesis for the evergreen shrub Artemisia tridentata and the subalpine, herbaceous Erythronium grandiflorum exposed to an in situ experimental freezing event during the spring snowmelt period. ? Photosynthetic tolerance of freezing was measured for plants growing under infrared (IR) warming at 3050 m in the Rocky Mountains, Colorado, USA. In situ freezing was imposed using cold nitrogen gas (from a pressurized container of liquid nitrogen) passed through a heat exchanger placed on top of stems and leaves. ? Plant water potential, photosynthetic CO2 assimilation, and stomatal conductance to water vapor were higher for both...
Dust deposition to mountain snow cover, which has increased since the late 19(th) century, accelerates the rate of snowmelt by increasing the solar radiation absorbed by the snowpack. Snowmelt occurs earlier, but is decoupled from seasonal warming. Climate warming advances the timing of snowmelt and early season phenological events (e.g., the onset of greening and flowering); however, earlier snowmelt without warmer temperatures may have a different effect on phenology. Here, we report the results of a set of snowmelt manipulations in which radiation-absorbing fabric and the addition and removal of dust from the surface of the snowpack advanced or delayed snowmelt in the alpine tundra. These changes in the timing...