Skip to main content
Advanced Search

Filters: Tags: LTER (X) > partyWithName: U.S. Geological Survey - ScienceBase (X) > Types: Downloadable (X)

21 results (12ms)   

View Results as: JSON ATOM CSV
thumbnail
This data release contains coastal wetland synthesis products for the geographic region of north shore Long Island, New York. Metrics for resiliency, including unvegetated to vegetated ratio (UVVR), marsh elevation, and mean tidal range, are calculated for smaller units delineated from a Digital Elevation Model, providing the spatial variability of physical factors that influence wetland health. Through scientific efforts initiated with the Hurricane Sandy Science Plan, the U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands with the intent of providing Federal, State, and local managers with tools to estimate the vulnerability and ecosystem...
thumbnail
This data release contains coastal wetland synthesis products for the geographic region of Hudson Valley and New York City, New York. Metrics for resiliency, including unvegetated to vegetated ratio (UVVR), marsh elevation, and mean tidal range, are calculated for smaller units delineated from a Digital Elevation Model, providing the spatial variability of physical factors that influence wetland health. Through scientific efforts initiated with the Hurricane Sandy Science Plan, the U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands with the intent of providing Federal, State, and local managers with tools to estimate the vulnerability...
thumbnail
This data release contains coastal wetland synthesis products for the geographic region of Hudson Valley and New York City, New York. Metrics for resiliency, including unvegetated to vegetated ratio (UVVR), marsh elevation, and mean tidal range, are calculated for smaller units delineated from a Digital Elevation Model, providing the spatial variability of physical factors that influence wetland health. Through scientific efforts initiated with the Hurricane Sandy Science Plan, the U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands with the intent of providing Federal, State, and local managers with tools to estimate the vulnerability...
thumbnail
This data release contains coastal wetland synthesis products for the geographic region from Jamaica Bay to western Great South Bay, located in southeastern New York State. Metrics for resiliency, including unvegetated to vegetated ratio (UVVR), marsh elevation, and mean tidal range, are calculated for smaller units delineated from a Digital Elevation Model, providing the spatial variability of physical factors that influence wetland health. Through scientific efforts initiated with the Hurricane Sandy Science Plan, the U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands with the intent of providing Federal, State, and local managers with...
thumbnail
This data release contains coastal wetland synthesis products for the geographic region of north shore Long Island, New York. Metrics for resiliency, including unvegetated to vegetated ratio (UVVR), marsh elevation, and mean tidal range, are calculated for smaller units delineated from a Digital Elevation Model, providing the spatial variability of physical factors that influence wetland health. Through scientific efforts initiated with the Hurricane Sandy Science Plan, the U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands with the intent of providing Federal, State, and local managers with tools to estimate the vulnerability and ecosystem...
thumbnail
Note: The 2021 data release "Geospatial characterization of salt marshes for Massachusetts" is a more recent and comprehensive MA salt marsh dataset. (https://doi.org/10.5066/P97E086F) Unvegetated to vegetated marsh ratio (UVVR) in the Cape Cod National Seashore (CACO) salt marsh complex and approximal wetlands is computed based on conceptual marsh units defined by Defne and Ganju (2019). UVVR was calculated based on U.S. Department of Agriculture National Agriculture Imagery Program (NAIP) 1-meter resolution imagery. Through scientific efforts initiated with the Hurricane Sandy Science Plan, the U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal...
thumbnail
Note: The 2021 data release "Geospatial characterization of salt marshes for Massachusetts" is a more recent and comprehensive MA salt marsh dataset. (https://doi.org/10.5066/P97E086F) The salt marsh complex of Cape Cod National Seashore (CACO), Massachusetts, USA and approximal wetlands were delineated to smaller, conceptual marsh units by geoprocessing of surface elevation data. Flow accumulation based on the relative elevation of each location is used to determine the ridge lines that separate each marsh unit while the surface slope is used to automatically assign each unit a drainage point, where water is expected to drain through. Through scientific efforts initiated with the Hurricane Sandy Science Plan,...
thumbnail
The salt marsh complex of Assateague Island National Seashore (ASIS) and Chincoteague Bay was delineated to smaller, conceptual marsh units by geoprocessing of surface elevation data. Flow accumulation based on the relative elevation of each location is used to determine the ridge lines that separate each marsh unit while the surface slope is used to automatically assign each unit a drainage point, where water is expected to drain through. Through scientific efforts initiated with the Hurricane Sandy Science Plan, the U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands, including the Assateague Island National Seashore and Chincoteague...
thumbnail
This data release contains coastal wetland synthesis products for the geographic region of eastern Long Island, New York, including the north and south forks, Gardiners Island, and Fishers Island. Metrics for resiliency, including unvegetated to vegetated ratio (UVVR), marsh elevation, and mean tidal range, are calculated for smaller units delineated from a Digital Elevation Model, providing the spatial variability of physical factors that influence wetland health. Through scientific efforts initiated with the Hurricane Sandy Science Plan, the U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands with the intent of providing Federal, State,...
thumbnail
This data release contains coastal wetland synthesis products for the geographic region of Hudson Valley and New York City, New York. Metrics for resiliency, including unvegetated to vegetated ratio (UVVR), marsh elevation, and mean tidal range, are calculated for smaller units delineated from a Digital Elevation Model, providing the spatial variability of physical factors that influence wetland health. Through scientific efforts initiated with the Hurricane Sandy Science Plan, the U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands with the intent of providing Federal, State, and local managers with tools to estimate the vulnerability...
thumbnail
This data release contains coastal wetland synthesis products for the geographic region of eastern Long Island, New York, including the north and south forks, Gardiners Island, and Fishers Island. Metrics for resiliency, including unvegetated to vegetated ratio (UVVR), marsh elevation, and mean tidal range, are calculated for smaller units delineated from a Digital Elevation Model, providing the spatial variability of physical factors that influence wetland health. Through scientific efforts initiated with the Hurricane Sandy Science Plan, the U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands with the intent of providing Federal, State,...
thumbnail
Note: The 2021 data release "Geospatial characterization of salt marshes for Massachusetts" is a more recent and comprehensive MA salt marsh dataset. (https://doi.org/10.5066/P97E086F) Elevation distribution in the Cape Cod National Seashore (CACO) salt marsh complex and approximal wetlands is given in terms of mean elevation of conceptual marsh units defined by Defne and Ganju (2019). The elevation data is based on the 1-meter resolution Coastal National Elevation Database (CoNED), where data gaps exist. Through scientific efforts initiated with the Hurricane Sandy Science Plan, the U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands....
thumbnail
This data release contains coastal wetland synthesis products for the geographic region of eastern Long Island, New York, including the north and south forks, Gardiners Island, and Fishers Island. Metrics for resiliency, including unvegetated to vegetated ratio (UVVR), marsh elevation, and mean tidal range, are calculated for smaller units delineated from a Digital Elevation Model, providing the spatial variability of physical factors that influence wetland health. Through scientific efforts initiated with the Hurricane Sandy Science Plan, the U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands with the intent of providing Federal, State,...
thumbnail
This data release contains coastal wetland synthesis products for the geographic region from Jamaica Bay to western Great South Bay, located in southeastern New York State. Metrics for resiliency, including unvegetated to vegetated ratio (UVVR), marsh elevation, and mean tidal range, are calculated for smaller units delineated from a Digital Elevation Model, providing the spatial variability of physical factors that influence wetland health. Through scientific efforts initiated with the Hurricane Sandy Science Plan, the U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands with the intent of providing Federal, State, and local managers with...
thumbnail
This data release contains coastal wetland synthesis products for the geographic region of north shore Long Island, New York. Metrics for resiliency, including unvegetated to vegetated ratio (UVVR), marsh elevation, and mean tidal range, are calculated for smaller units delineated from a Digital Elevation Model, providing the spatial variability of physical factors that influence wetland health. Through scientific efforts initiated with the Hurricane Sandy Science Plan, the U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands with the intent of providing Federal, State, and local managers with tools to estimate the vulnerability and ecosystem...
thumbnail
This data release contains coastal wetland synthesis products for the geographic region of north shore Long Island, New York. Metrics for resiliency, including unvegetated to vegetated ratio (UVVR), marsh elevation, and mean tidal range, are calculated for smaller units delineated from a Digital Elevation Model, providing the spatial variability of physical factors that influence wetland health. Through scientific efforts initiated with the Hurricane Sandy Science Plan, the U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands with the intent of providing Federal, State, and local managers with tools to estimate the vulnerability and ecosystem...
thumbnail
Lifespan of salt marshes in Massachusetts (MA) are calculated using conceptual marsh units defined by Ackerman and others (2022). The lifespan calculation is based on estimated sediment supply and sea-level rise (SLR) predictions after Ganju and others (2020). Sea level predictions are local estimates which correspond to the 0.3, 0.5, and 1.0 meter increase in Global Mean Sea Level (GMSL) scenarios by 2100 from Sweet and others (2022). The U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands, including Massachusetts salt marshes, with the intent of providing Federal, State, and local managers with tools to estimate the vulnerability and...
thumbnail
This data release contains coastal wetland synthesis products for the geographic region of eastern Long Island, New York, including the north and south forks, Gardiners Island and Fishers Island. Metrics for resiliency, including unvegetated to vegetated ratio (UVVR), marsh elevation, and mean tidal range, are calculated for smaller units delineated from a Digital Elevation Model, providing the spatial variability of physical factors that influence wetland health. Through scientific efforts initiated with the Hurricane Sandy Science Plan, the U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands with the intent of providing Federal, State,...
thumbnail
The sediment-based lifespan of salt marsh units in Assateague Island National Seashore (ASIS) and Chincoteague Bay is shown for conceptual marsh units defined by Defne and Ganju (2018). The lifespan represents the timescale by which the current sediment mass within a marsh parcel can no longer compensate for sediment export and deficits induced by sea-level rise. The lifespan calculation is based on vegetated cover, marsh elevation, sediment supply, and sea-level rise (SLR) predictions after Ganju and others (2020). Sea level rise scenarios are present day estimates corresponding to the 0.3, 0.5, and 1.0 meter increase in Global Mean Sea Level (GMSL) by 2100 from Sweet and others (2017). Through scientific efforts...
thumbnail
Note: The 2021 data release "Geospatial characterization of salt marshes for Massachusetts" is a more recent and comprehensive MA salt marsh dataset. (https://doi.org/10.5066/P97E086F) Biomass production is positively correlated with mean tidal range in salt marshes along the Atlantic coast of the United States of America. Recent studies support the idea that enhanced stability of the marshes can be attributed to increased vegetative growth due to increased tidal range. This dataset displays the spatial variation of mean tidal range (i.e. Mean Range of Tides, MN) in the Plum Island Estuary and Parker River (PIEPR) salt marsh complex based on conceptual marsh units defined by Defne and Ganju (2018). MN was based...


map background search result map search result map Mean tidal range in marsh units of Plum Island Estuary and Parker River salt marsh complex, Massachusetts Conceptual marsh units for Assateague Island National Seashore and Chincoteague Bay, Maryland and Virginia Conceptual marsh units for Cape Cod National Seashore salt marsh complex, Massachusetts Unvegetated to vegetated marsh ratio in Cape Cod National Seashore salt marsh complex, Massachusetts Elevation of marsh units in Cape Cod National Seashore salt marsh complex, Massachusetts Unvegetated to vegetated marsh ratio in Jamaica Bay to western Great South Bay salt marsh complex, New York Mean tidal range in marsh units of Jamaica Bay to western Great South Bay salt marsh complex, New York Conceptual marsh units of eastern Long Island salt marsh complex, New York (ver. 2.0, March 2024) Unvegetated to vegetated ratio of marsh units in eastern Long Island salt marsh complex, New York (ver. 2.0, March 2024) Mean tidal range of marsh units in eastern Long Island salt marsh complex, New York (ver. 2.0, March 2024) Exposure potential of marsh units to environmental health stressors in eastern Long Island salt marsh complex, New York (ver. 2.0, March 2024) Unvegetated to vegetated ratio of marsh units in north shore Long Island salt marsh complex, New York Elevation of marsh units in north shore Long Island salt marsh complex, New York Mean tidal range of marsh units in north shore Long Island salt marsh complex, New York Exposure potential of marsh units to environmental health stressors in north shore Long Island salt marsh complex, New York Conceptual marsh units of Hudson Valley and New York City salt marsh complex, New York Elevation of marsh units in Hudson Valley and New York City salt marsh complex, New York Exposure potential of marsh units to environmental health stressors in Hudson Valley and New York City salt marsh complex, New York Lifespan of marsh units in Assateague Island National Seashore and Chincoteague Bay, Maryland and Virginia Lifespan of Massachusetts salt marsh units Mean tidal range in marsh units of Plum Island Estuary and Parker River salt marsh complex, Massachusetts Unvegetated to vegetated marsh ratio in Jamaica Bay to western Great South Bay salt marsh complex, New York Mean tidal range in marsh units of Jamaica Bay to western Great South Bay salt marsh complex, New York Unvegetated to vegetated marsh ratio in Cape Cod National Seashore salt marsh complex, Massachusetts Elevation of marsh units in Cape Cod National Seashore salt marsh complex, Massachusetts Conceptual marsh units for Cape Cod National Seashore salt marsh complex, Massachusetts Unvegetated to vegetated ratio of marsh units in north shore Long Island salt marsh complex, New York Elevation of marsh units in north shore Long Island salt marsh complex, New York Mean tidal range of marsh units in north shore Long Island salt marsh complex, New York Exposure potential of marsh units to environmental health stressors in north shore Long Island salt marsh complex, New York Conceptual marsh units for Assateague Island National Seashore and Chincoteague Bay, Maryland and Virginia Lifespan of marsh units in Assateague Island National Seashore and Chincoteague Bay, Maryland and Virginia Unvegetated to vegetated ratio of marsh units in eastern Long Island salt marsh complex, New York (ver. 2.0, March 2024) Mean tidal range of marsh units in eastern Long Island salt marsh complex, New York (ver. 2.0, March 2024) Exposure potential of marsh units to environmental health stressors in eastern Long Island salt marsh complex, New York (ver. 2.0, March 2024) Conceptual marsh units of eastern Long Island salt marsh complex, New York (ver. 2.0, March 2024) Conceptual marsh units of Hudson Valley and New York City salt marsh complex, New York Elevation of marsh units in Hudson Valley and New York City salt marsh complex, New York Exposure potential of marsh units to environmental health stressors in Hudson Valley and New York City salt marsh complex, New York Lifespan of Massachusetts salt marsh units