Skip to main content
Advanced Search

Filters: Tags: Pacific Islands CASC (X)

218 results (71ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
The Pacific Ocean is home to a number of low-lying, coastal national parks and wildlife refuges. These public lands are situated on coral reef-lined islands that are susceptible to inundation from sea-level rise and flooding during storms. Because of their low-lying nature and limited availability of space, ecosystems, cultural resources, and infrastructure on these islands are particularly vulnerable to flooding. Sea-level rise will further exacerbate the impact of storms on island parks and refuges by increasing wave-driven coastal flooding, with consequences for ecological and human communities alike. However, most assessments of future conditions at coastal national parks and refuges consider only permanent...
thumbnail
As a low-lying coastal nation, the Republic of the Marshall Islands is at the forefront of exposure to climate change impacts. The Republic of the Marshall Islands has a strong dependence on natural resources and biodiversity not only for food and income but also for culture and livelihood. However, these resources are threatened by rising sea levels and associated coastal hazards (storm surges, saltwater intrusion, erosion, etc.). High-quality data for atoll ‘ridge to reef’ (land and ocean) areas are needed to provide remote communities with the tools and strategies to make adaptation efforts before disasters occur. Although the Republic of the Marshall Islands’ National Strategic Plans recognize the need to...
thumbnail
Loko iʻa (Hawaiian fishponds) are an advanced, extensive form of aquaculture found nowhere else in the world. Loko iʻa practices are the result of over a thousand years of intergenerational knowledge, experimentation, and adaptation, and once produced over 2 million pounds of fish per year throughout the Hawaiian Islands. These fishponds provided a consistent and diverse supply of fish when ocean fishing was not possible or did not yield enough supply. In many ways, loko iʻa are foundational to traditional aquaculture in Hawai‘i and have the potential to provide food security that contributes to greater coastal community resilience and economic autonomy. Today, changes in coastal and hydrological processes, including...
thumbnail
For the past few years, “king tides,” or the highest tides of the year, have been occurring more frequently and significantly affecting coastal environments across Hawaiʻi. Now, disappearing beaches and waves crashing over roadways are seemingly the “new normal.” In response, the state of Hawaiʻi is implementing adaptation strategies to combat tidal flooding in coastal areas. While flood management strategies are being implemented in urban areas, less is known about how tidal flooding, and associated inundation into surface and groundwater, might influence watershed dynamics and the native animals that depend on estuarine environments where freshwater meets the sea. Efforts for biocultural restoration of ecosystem...
thumbnail
Hawaiʻi is considered a worldwide biodiversity hotspot, with nearly 90 percent of its native plants found nowhere else in the world. However, about half of these native plants are imperiled by threats including human development, non-native species, and climate change. Through this project, scientists modeled the relative vulnerability of over 1,000 native plant species to the effects of climate change. A panel of experts in Hawaiian plant species assisted with the development of the model and verified its results. From the model, researchers were able to develop a vulnerability score for each plant species and identify categories of species with high, medium, and low vulnerability to climate change. This information...
thumbnail
The beaches of the Hawaiian Islands attract nearly 9 million visitors each year, who inject around $15.6 billion into the state’s economy and support almost 200,000 jobs. Beyond their economic importance, Hawaiian beaches are also culturally and ecologically valuable. However, climate change driven sea-level rise is causing many beaches to disappear, endangering property, infrastructure, and critical habitats. The goal of this project was to develop a method for forecasting erosion-vulnerable beach areas that could be used in coastal management planning. Researchers focused on the island of Kauaʻi, modeling beach response to rising sea level over the next century and producing maps that provide information about...
thumbnail
Landscape-scale conservation of threatened and endangered species is often challenged by multiple, sometimes conflicting, land uses. In Hawaiʻi, efforts to conserve native forests have come into conflict with objectives to sustain non-native game mammals, such as feral pigs, goats, and deer, for subsistence and sport hunting. Maintaining stable or increasing game populations represents one of the greatest obstacles to the recovery of Hawaii’s 425 threatened and endangered plant species. Many endemic Hawaiian species have declined and become endangered as a result of herbivorous non-native game mammals. Meanwhile, other environmental changes, including the spread of invasive grasses and changing precipitation patterns...
thumbnail
Hawaiian shorelines and near-shore waters have long been used for cultural activities, food gathering and fishing, and recreation. As seascapes are physically altered by changing climate, the ways in which people experience these environments will likely change as well. Local perspectives of how seascapes are changing over time can help managers better understand and manage these areas for both natural persistence and human use. For this project, researchers conducted interviews and surveys of surfers and other ocean users to gather observations and perceptions of change over time at Hilo Bay, Hawaiʻi. They combined these results with historical data on public beach use and biophysical data from monitoring buoys...
A new study published in Climate Change Responses by University of Hawaiʻi at Mānoa researchers shows how shifting atmospheric circulation patterns that may be caused by climate change are threatening populations of the iconic silversword on Haleakalā. The native plant is found nowhere else in the world. Paul Krushelnycky of the UH Mānoa Department of Plant and Environmental Protection Sciences and his co-authors researched the effects of changes in temperature, precipitation and solar radiation on populations of silverswords, using 80 years of data records. The team found that Haleakalā silversword numbers have declined about 60 percent since 1990 and that this decline coincides with lower rainfall in the area,...
This downloadable PDF research feature summarizes the Pacific Islands Climate Science Center-supported project "Climate Change Research in Support of Hawaiian Ecosystem Management: An Integrated Approach". The key goals of this project were 1) to understand how changes in the Earth’s future climate system will affect the frequency and severity of extreme weather events in Hawai`i, 2) to support studies of the ecological impacts of climate change on native Hawaiian plants and animals and 3) to provide information needed by natural resource managers charged with preserving native biodiversity.
This Project Snapshot provides a brief overview summary of the project "Empirical Projection of Future Shoreline Position and Inundation Due to Sea Level Rise".
The Republic of the Marshall Islands (RMI) is a nation of widely dispersed, low-lying coral atolls and islands, with over 100 square miles of land area scattered across 750,000 square miles of ocean. Average elevation for the RMI is approximately 7 feet above mean sea level, but many islands and atolls are much lower. As climate change causes sea level to rise and weather patterns to shift, the Marshall Islands are increasingly having to contend with flooding and drought that damages agriculture, homes, and infrastructure. Residents are increasingly making the difficult choice to leave their home islands in the hope of a more stable future, moving within the country to larger islands or to the United States where...
This project snapshot provides a brief overview of the project "Diagnosing and Communicating the Effect of Climate Variability on Frequency of Coastal Inundation".
Abstract (from http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0088948): Reproduction in rare plants may be influenced and limited by a complex combination of factors. External threats such as invasive species and landscape characteristics such as isolation may impinge on both pollination and seed predation dynamics, which in turn can strongly affect reproduction. I assessed how patterns in floral visitation, seed predation, invasive ant presence, and plant isolation influenced one another and ultimately affected viable seed production in Haleakalā silverswords (Argyroxiphium sandwicense subsp. macrocephalum) of Hawai’i. Floral visitation was dominated by endemic Hylaeus bees, and patterns of visitation...
Abstract: To design effective marine reserves and support fisheries, more information on fishing patterns and impacts for targeted species is needed, as well as better understanding of their key habitats. However, fishing impacts vary geographically and are difficult to disentangle from other factors that influence targeted fish distributions. We developed a set of fishing effort and habitat layers at high resolution and employed machine learning techniques to create regional‐scale seascape models and predictive maps of biomass and body length of targeted reef fishes for the main Hawaiian Islands. Spatial patterns of fishing effort were shown to be highly variable and seascape models indicated a low threshold beyond...
thumbnail
Pacific Islands CASC engages in a variety of science co-production activities across the region with the goal of developing usable science with resource managers to help them better integrate adaptation strategies for fish, wildlife, water, land, and people into their decision making and planning. Our flagship program for knowledge co-production is the Manager Climate Corps. MCC was developed at the PI-CASC consortium member institution, the University of Hawaiʻi at Hilo, to support and build connections between natural and cultural resource managers, researchers, and graduate students on Hawaiʻi Island through in-person networking opportunities and to promote the benefits of collaborative, stakeholder-driven research...
thumbnail
Freshwater is a critical driver for island ecosystems. In Hawaiʻi, though rainfall intensity has increased, total rainfall has been on the decline for the last two decades and, as a result, streamflow has also been reduced. The changes in dynamic patterns of streamflow could result in impacts to river, estuarine, and coastal habitats. In turn, these changes also affect the nine native Hawaiian aquatic species found in these habitats at different stages of their amphidromous life cycle (in which they migrate from fresh to salt water or vice versa). To examine how changes in streamflow regime have impacted habitat quality for native migratory aquatic species, an ongoing project has been examining statewide long-term...
thumbnail
Haleakalā National Park (HNP) and the surrounding landscape spans many different land cover types, some of which are undergoing vegetation changes that can reduce the amount of water that infiltrates into soil. Decreased soil infiltration can lead to the erosion of terrestrial habitats, increases in the amount of sediment entering aquatic habitats, and flooding of downstream areas as runoff increases after storms. Currently, HNP managers are attempting to control runoff and erosion to avoid loss and damage within park boundaries and parks located downstream. Managers in HNP have expressed a need for information on current and future runoff and erosion risk to help prioritize management within the park and other...
thumbnail
Ecosystems such as coral reefs and mangroves provide an effective first line of defense against coastal hazards and represent a promising nature-based solution to adapt to sea-level rise. In many areas, coral reefs cause waves to break and lose energy, allowing for sediment to accumulate on the inshore portion of reef flats (i.e. the shallowest, flattest part of a reef) and mangroves to establish. Mangroves cause further attenuation (i.e. energy loss) waves and storm surge as water moves through roots and trunks of the trees. Together, these ecosystems provide valuable protection from coastal flooding, but is unclear how this protection may be affected by sea-level rise. An assessment of future sea-level rise vulnerability...
thumbnail
The conditions of coral reefs in the Hawaiian Islands are predicted to decline significantly from climate change over the next 100 years. To better prepare for the impacts of climate change on Hawaiian reefs, the research team uses a system of models to simulate ocean waves and circulation, rainfall and storm run-off, and coral reef community dynamics through the year 2100. These models will identify reef areas that are either vulnerable or resilient to the many stressors that the future may hold for reefs. The team’s hope is that this work can identify areas that might benefit from management actions to minimize local stressors such as land-based pollution. Through a collaborative partnership with state and federal...


map background search result map search result map Projections of Future Coral Reef Communities in DOI-Managed Coastal Areas in the Hawaiian Islands Establishing Climate Change Vulnerability Rankings for Hawaiian Native Plants Forecasting Beach Loss from Sea-Level Rise on the Island of Kauaʻi Changing Hawaiian Seascapes and Their Management Implications Identifying the Risk of Runoff and Erosion in Hawaiʻi’s National Parks Managing Non-native Game Mammals to Reduce Future Conflicts with Native Plant Conservation in Hawai‘i Science Needs Assessment to Support Management of Loko Iʻa (Hawaiian Fishpond) Resources and Practices Critical to the Native Hawaiian Community The Impact of Climate Change and Sea-Level Rise on Future Flooding of Coastal Parks and Refuges in Hawaiʻi and the U.S. Affiliated Pacific Islands Enhancing Stakeholder Capacity for Coastal Inundation Assessments in the Marshall Islands Connecting Ecosystems from Mountains to the Sea in a Changing Climate Science Co-Production Effect of Extreme Tidal Events on Future Sea-Level Rise Scenarios for He‘eia Fish Communities undergoing Ahupua‘a Restoration The Impact of Sea-Level Rise on Coral Reef and Mangrove Interactions and the Resulting Coastal Flooding Hazards Forecasting Beach Loss from Sea-Level Rise on the Island of Kauaʻi Changing Hawaiian Seascapes and Their Management Implications The Impact of Sea-Level Rise on Coral Reef and Mangrove Interactions and the Resulting Coastal Flooding Hazards Projections of Future Coral Reef Communities in DOI-Managed Coastal Areas in the Hawaiian Islands Establishing Climate Change Vulnerability Rankings for Hawaiian Native Plants Enhancing Stakeholder Capacity for Coastal Inundation Assessments in the Marshall Islands Identifying the Risk of Runoff and Erosion in Hawaiʻi’s National Parks Science Needs Assessment to Support Management of Loko Iʻa (Hawaiian Fishpond) Resources and Practices Critical to the Native Hawaiian Community Effect of Extreme Tidal Events on Future Sea-Level Rise Scenarios for He‘eia Fish Communities undergoing Ahupua‘a Restoration Connecting Ecosystems from Mountains to the Sea in a Changing Climate The Impact of Climate Change and Sea-Level Rise on Future Flooding of Coastal Parks and Refuges in Hawaiʻi and the U.S. Affiliated Pacific Islands Science Co-Production