Skip to main content
Advanced Search

Filters: Tags: Sediment transport (X) > partyWithName: U.S. Geological Survey - ScienceBase (X) > partyWithName: Woods Hole Coastal and Marine Science Center (X) > partyWithName: Neil Kamal Ganju (X)

18 results (68ms)   

View Results as: JSON ATOM CSV
thumbnail
Management efforts of the tidally-restricted Herring River in Wellfleet, MA include research to understand pre-restoration sediment conditions. Submerged multiparameter sondes that measure optical turbidity were deployed at four sites landward and seaward of the Herring River restriction. Periodically, the sites were visited and additional turbidity measurements were collected with a handheld multiparameter sonde, and water samples were collected for determination of suspended-sediment concentration (SSC). The handheld turbidity measurements were regressed against SSC using a repeated median regression to determine a calibration curve for calibrating the turbidity time-series data to SSC. The SSC derived from the...
The development of Submerged Aquatic Vegetation (SAV) growth model within the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) model leads to a change in SAV biomass. The SAV biomass is computed from temperature, nutrient loading and light predictions obtained from coupled hydrodynamics (temperature), bio-geochemistry (nutrients) and bio-optical (light) models. In exchange, the growth of SAV sequesters or contributes nutrients from the water column and sediment layers. The presence of SAV modulates current and wave attenuation and consequently affects modelled sediment transport. The model of West Falmouth Harbor in Massachusetts, USA was simulated to study the seagrass growth/dieback pattern in a hypothetical...
thumbnail
The development of Submerged Aquatic Vegetation (SAV) growth model within the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) model leads to a change in SAV biomass. The SAV biomass is computed from temperature, nutrient loading and light predictions obtained from coupled hydrodynamics (temperature), bio-geochemistry (nutrients) and bio-optical (light) models. In exchange, the growth of SAV sequesters or contributes nutrients from the water column and sediment layers. The presence of SAV modulates current and wave attenuation and consequently affects modelled sediment transport. The model of West Falmouth Harbor in Massachusetts, USA was simulated to study the seagrass growth/dieback pattern in a hypothetical...
Categories: Data; Types: Map Service, NetCDF OPeNDAP Service, OGC WMS Layer; Tags: CMG_Portal, Earth Science > Human Dimensions > Natural Hazards > Floods, Earth Science > Oceans > Marine Sediments >Sediment Transport, Earth Science > Oceans > Ocean Circulation > Ocean Currents, Earth Science > Oceans > Ocean Temperature > Potential Temperature, All tags...
thumbnail
Suspended-sediment transport is a critical element governing the geomorphology of tidal marshes and estuaries. Marsh elevation, relative to sea level, is maintained by both organic material and the deposition of inorganic sediment. Additionally, horizontal marsh extent is altered by lateral erosion and accretion. In wetlands within and near Grand Bay National Estuarine Research Reserve, parts of the salt marsh are eroding relatively rapidly. To understand the connection between sediment fluxes and these processes, the U.S. Geological Survey made oceanographic and water-quality measurements from August 2, 2016, to January 28, 2017, to quantify suspended-sediment concentration and sediment transport in tidal channels...
thumbnail
This data release contains coastal wetland synthesis products for the state of Maine. Metrics for resiliency, including the unvegetated to vegetated ratio (UVVR), marsh elevation, tidal range, and lifespan, are calculated for smaller units delineated from a digital elevation model, providing the spatial variability of physical factors that influence wetland health. The U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands with the intent of providing federal, state, and local managers with tools to estimate the vulnerability and ecosystem service potential of these wetlands. For this purpose, the response and resilience of coastal wetlands...
thumbnail
In 2012, Hurricane Sandy struck the Northeastern US causing devastation among coastal ecosystems. Post-hurricane marsh restoration efforts have included sediment deposition, planting of vegetation, and restoring tidal hydrology. The work presented here is part of a larger project funded by the National Fish and Wildlife Foundation (NFWF) to monitor the post-restoration ecological resilience of coastal ecosystems in the wake of Hurricane Sandy. The U.S. Geological Survey Woods Hole Coastal and Marine Science Center made in-situ observations during 2018-2019 and 2022-2023 at two sites: Thompsons Beach, NJ and Stone Harbor, NJ. Marsh creek hydrodynamics and water quality including currents, waves, water levels, water...
thumbnail
In 2012, Hurricane Sandy struck the Northeastern US causing devastation among coastal ecosystems. Post-hurricane marsh restoration efforts have included sediment deposition, planting of vegetation, and restoring tidal hydrology. The work presented here is part of a larger project funded by the National Fish and Wildlife Foundation (NFWF) to monitor the post-restoration ecological resilience of coastal ecosystems in the wake of Hurricane Sandy. The U.S. Geological Survey Woods Hole Coastal and Marine Science Center made in-situ observations during 2018-2019 and 2022-2023 at two sites: Thompsons Beach, NJ and Stone Harbor, NJ. Marsh creek hydrodynamics and water quality including currents, waves, water levels, water...
thumbnail
Lifespan of salt marshes in New York are calculated using conceptual marsh units defined by Defne and Ganju (2018) and Welk and others (2019, 2020a, 2020b, 2020c). The lifespan calculation is based on estimated sediment supply and sea-level rise (SLR) predictions after Ganju and others (2020). Sea level predictions are local estimates which correspond to the 0.3, 0.5, and 1.0 meter increase in Global Mean Sea Level (GMSL) scenarios by 2100 from Sweet and others (2022). The U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands with the intent of providing Federal, State, and local managers with tools to estimate the vulnerability and ecosystem...
thumbnail
The development of Submerged Aquatic Vegetation (SAV) growth model within the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) model leads to a change in SAV biomass. The SAV biomass is computed from temperature, nutrient loading and light predictions obtained from coupled hydrodynamics (temperature), bio-geochemistry (nutrients) and bio-optical (light) models. In exchange, the growth of SAV sequesters or contributes nutrients from the water column and sediment layers. The presence of SAV modulates current and wave attenuation and consequently affects modelled sediment transport. The SAV growth model is employed to simulate the model of West Falmouth Harbor in Massachusetts, USA to test the ability of the...
Categories: Data; Types: Map Service, NetCDF OPeNDAP Service, OGC WMS Layer; Tags: CMG_Portal, Earth Science > Human Dimensions > Natural Hazards > Floods, Earth Science > Oceans > Marine Sediments >Sediment Transport, Earth Science > Oceans > Ocean Circulation > Ocean Currents, Earth Science > Oceans > Ocean Temperature > Potential Temperature, All tags...
thumbnail
Lifespan distribution in the Chesapeake Bay (CB) salt marsh complex is presented in terms of lifespan of conceptual marsh units defined by Ackerman and others (2022). The lifespan calculation is based on estimated sediment supply and sea-level rise (SLR) predictions after Ganju and others (2020). Sea level predictions are present day estimates at the prescribed rate of SLR, which correspond to the 0.3, 0.5, and 1.0 meter increase in Global Mean Sea Level (GMSL) scenarios by 2100 from Sweet and others (2022). Through scientific efforts initiated with the Hurricane Sandy Science Plan, the U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands,...
The COAWST (Coupled Ocean-Atmosphere-Wave-Sediment Transport) modeling framework was extended to add two key processes that affect marshes, erosion due to lateral wave thrust (LWT) and vertical accretion due to biomass productivity. The testing of the combined effects of integrating these two processes was done by modeling marsh complexes within Forsythe National Wildlife Refuge and the Barnegat Bay (BB) estuary, New Jersey, USA. The simulations were performed first for the month of May 2015 for the entire Barnegat Bay. The Barnegat Bay estuary solution was used to force the two smaller domains that encompass Reedy and Dinner Creeks and are modeled for the same time period.
Categories: Data; Types: Map Service, NetCDF OPeNDAP Service, OGC WMS Layer; Tags: CMG_Portal, Earth Science > Human Dimensions > Natural Hazards > Floods, Earth Science > Oceans > Marine Sediments >Sediment Transport, Earth Science > Oceans > Ocean Circulation > Ocean Currents, Earth Science > Oceans > Ocean Temperature > Potential Temperature, All tags...
The COAWST (Coupled Ocean-Atmosphere-Wave-Sediment Transport) modeling framework was extended to add two key processes that affect marshes, erosion due to lateral wave thrust (LWT) and vertical accretion due to biomass productivity. The testing of the combined effects of integrating these two processes was done by modeling marsh complexes within Forsythe National Wildlife Refuge and the Barnegat Bay (BB) estuary, New Jersey, USA. The simulations were performed first for the month of May 2015 for the entire Barnegat Bay. The Barnegat Bay estuary solution was used to force the two smaller domains that encompass Reedy and Dinner Creeks and are modeled for the same time period.
Categories: Data; Types: Map Service, NetCDF OPeNDAP Service, OGC WMS Layer; Tags: CMG_Portal, Earth Science > Human Dimensions > Natural Hazards > Floods, Earth Science > Oceans > Marine Sediments >Sediment Transport, Earth Science > Oceans > Ocean Circulation > Ocean Currents, Earth Science > Oceans > Ocean Temperature > Potential Temperature, All tags...
thumbnail
Lifespan of salt marshes in Massachusetts (MA) are calculated using conceptual marsh units defined by Ackerman and others (2022). The lifespan calculation is based on estimated sediment supply and sea-level rise (SLR) predictions after Ganju and others (2020). Sea level predictions are local estimates which correspond to the 0.3, 0.5, and 1.0 meter increase in Global Mean Sea Level (GMSL) scenarios by 2100 from Sweet and others (2022). The U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands, including Massachusetts salt marshes, with the intent of providing Federal, State, and local managers with tools to estimate the vulnerability and...
thumbnail
In 2012, Hurricane Sandy struck the Northeastern US causing devastation among coastal ecosystems. Post-hurricane marsh restoration efforts have included sediment deposition, planting of vegetation, and restoring tidal hydrology. The work presented here is part of a larger project funded by the National Fish and Wildlife Foundation (NFWF) to monitor the post-restoration ecological resilience of coastal ecosystems in the wake of Hurricane Sandy. The U.S. Geological Survey Woods Hole Coastal and Marine Science Center made in-situ observations during 2018-2019 and 2022-2023 at two sites: Thompsons Beach, NJ and Stone Harbor, NJ. Marsh creek hydrodynamics and water quality including currents, waves, water levels, water...
thumbnail
There are two idealized domains developed in this work to test the marsh dynamics in the COAWST modeling framework. 1. First idealized domain is to test and verify the lateral thrust calculations. 2. Second idealized domain is to test the implementation of lateral retreat formulations.
thumbnail
Marshes may drown if they are unable to accrete sediment at the rate of sea level rise, but predicting the rate of sediment accretion at different marshes is challenging because many processes (e.g. tidal range, wave frequency) and conditions (e.g. available sediment, vegetation density, shape of the marsh edge) impact it. The Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST, Warner and others 2019; Warner and others 2010) model was used to simulate three-dimensional hydrodynamics, waves, and sediment transport on a marsh platform in an idealized domain. The computational grid was 400 (20) cells in the cross-shore (along-shore) directions with 10 vertical sigma layers, and a cross-shore horizontal resolution...
Categories: Data; Types: Map Service, NetCDF OPeNDAP Service, OGC WMS Layer; Tags: Earth Science > Oceans > Coastal Processes > Estuaries, Earth Science > Oceans > Coastal Processes > Marshes, Earth Science > Oceans > Coastal Processes > Sediment Transport, Earth Science > Oceans > Coastal Processes > Sedimentation, Hydrology, All tags...
thumbnail
The Herring River in Wellfleet, MA is a tidally-restricted estuary system. Management options including potential restoration of unrestricted tidal flows require an understanding of pre-restoration sediment conditions. Altering future tidal flows may cause changes in net sediment flux and direction, which could affect marsh restoration and aquaculture in Wellfleet Harbor. This research aims to measure sediment fluxes seaward of the Herring River restriction and sediment concentrations landward of the restriction. These measurements will inform management efforts by estimating the sediment budget and sediment availability after possible removal of the tidal restriction.
thumbnail
The COAWST (Coupled Ocean-Atmosphere-Wave-Sediment Transport) modeling framework was extended to add two key processes that affect marshes, erosion due to lateral wave thrust (LWT) and vertical accretion due to biomass productivity. The testing of the combined effects of integrating these two processes was done by modeling marsh complexes within Forsythe National Wildlife Refuge and the Barnegat Bay (BB) estuary, New Jersey, USA. The simulations were performed first for the month of May 2015 for the entire Barnegat Bay. The Barnegat Bay estuary solution was used to force the two smaller domains that encompass Reedy and Dinner Creeks and are modeled for the same time period.
Categories: Data; Types: Map Service, NetCDF OPeNDAP Service, OGC WMS Layer; Tags: CMG_Portal, Earth Science > Human Dimensions > Natural Hazards > Floods, Earth Science > Oceans > Marine Sediments >Sediment Transport, Earth Science > Oceans > Ocean Circulation > Ocean Currents, Earth Science > Oceans > Ocean Temperature > Potential Temperature, All tags...


    map background search result map search result map Numerical model of Submerged Aquatic Vegetation (SAV) growth dynamics in West Falmouth Harbor Numerical model of Submerged Aquatic Vegetation (SAV) growth dynamics in West Falmouth Harbor with nitrate loading Numerical model of Submerged Aquatic Vegetation (SAV) growth dynamics in West Falmouth Harbor without nitrate loading Suspended-sediment concentration data from water samples collected in 2016-17 in Grand Bay, Alabama and Mississippi COAWST model of Barnegat Bay creeks to demonstrate marsh dynamics USGS-CMG-COAWST Model: Reedy Creek Simulations May 2015 USGS-CMG-COAWST Model: Dinner Creek Simulations May 2015 Suspended-sediment concentrations and loss-on-ignition from water samples collected in the Herring River during 2018-19 in Wellfleet, MA (ver 1.1, March 2023) Lifespan of Chesapeake Bay salt marsh units Lifespan of Massachusetts salt marsh units Water quality data from a multiparameter sonde collected in the Herring River during November 2018 to November 2019 in Wellfleet, MA Idealized COAWST model cases for testing sensitivity of sediment transport and marsh accretion to vegetation, wave, and sediment parameters Grain-size analysis data from sediment samples in support of oceanographic and water-quality measurements at Thompsons Beach and Stone Harbor, New Jersey, collected in September 2018 and March 2022 Suspended-sediment concentration and loss-on-ignition from water samples at Thompsons Beach and Stone Harbor, New Jersey, collected between September 2018 and December 2022 Water quality data from a multiparameter sonde from Thompsons Beach and Stone Harbor, New Jersey, collected between September 2018 and December 2022 Lifespan of marsh units in Maine salt marshes Lifespan of marsh units in New York salt marshes Suspended-sediment concentrations and loss-on-ignition from water samples collected in the Herring River during 2018-19 in Wellfleet, MA (ver 1.1, March 2023) Water quality data from a multiparameter sonde collected in the Herring River during November 2018 to November 2019 in Wellfleet, MA Numerical model of Submerged Aquatic Vegetation (SAV) growth dynamics in West Falmouth Harbor with nitrate loading Numerical model of Submerged Aquatic Vegetation (SAV) growth dynamics in West Falmouth Harbor without nitrate loading USGS-CMG-COAWST Model: Reedy Creek Simulations May 2015 Idealized COAWST model cases for testing sensitivity of sediment transport and marsh accretion to vegetation, wave, and sediment parameters USGS-CMG-COAWST Model: Dinner Creek Simulations May 2015 Suspended-sediment concentration data from water samples collected in 2016-17 in Grand Bay, Alabama and Mississippi Water quality data from a multiparameter sonde from Thompsons Beach and Stone Harbor, New Jersey, collected between September 2018 and December 2022 Grain-size analysis data from sediment samples in support of oceanographic and water-quality measurements at Thompsons Beach and Stone Harbor, New Jersey, collected in September 2018 and March 2022 Suspended-sediment concentration and loss-on-ignition from water samples at Thompsons Beach and Stone Harbor, New Jersey, collected between September 2018 and December 2022 COAWST model of Barnegat Bay creeks to demonstrate marsh dynamics Lifespan of Massachusetts salt marsh units Lifespan of marsh units in New York salt marshes Lifespan of Chesapeake Bay salt marsh units Lifespan of marsh units in Maine salt marshes