Skip to main content
Advanced Search

Filters: Tags: hazard (X)

113 results (68ms)   

View Results as: JSON ATOM CSV
thumbnail
A one-year seismic hazard forecast for the Central and Eastern United States, based on induced and natural earthquakes, has been produced by the U.S. Geological Survey. The model assumes that earthquake rates calculated from several different time windows will remain relatively stationary and can be used to forecast earthquake hazard and damage intensity for the year 2016. This assessment is the first step in developing an operational earthquake forecast for the CEUS, and the analysis could be revised with updated seismicity and model parameters. Consensus input models consider alternative earthquake catalog durations, smoothing parameters, maximum magnitudes, and ground motion estimates, and represent uncertainties...
thumbnail
A comparison of the 2017 USGS South America seismic hazard model and the 2010 USGS preliminary model was made to see how the models differ. The comparison was made as the ratio of PGA at 10% probability of exceedance in 50 years. The ratio map is included here as a geo-referenced tiff (GeoTIFF). The gridded data for the 2017 PGA at 10% probability can be found here, while the gridded data for the 2010 PGA at 10% probability can be found in the zip archive that can be downloaded using a link on this page.
thumbnail
Maximum considered earthquake geometric mean peak ground acceleration maps (MCEG) are for assessment of the potential for liquefaction and soil strength loss, as well as for determination of lateral earth pressures in the design of basement and retaining walls. The maps are derived from the USGS seismic hazard maps in accordance with the site-specific ground-motion procedures of the NEHRP Recommended Seismic Provisions for New Building and Other Structures and the ASCE Minimum Design Loads for Buildings and Other Structures (also known as the ASCE 7 Standard; ASCE, 2016). The MCEG ground motions are taken as the lesser of probabilistic and deterministic values, as explained in the Provisions. The gridded probabilistic...
thumbnail
A comparison of the 2017 USGS South America seismic hazard model and the Global Seismic Hazard Assessment Program (GSHAP) model was made to see how the models differ. The comparison was made as the ratio of PGA at 10% probability of exceedance in 50 years. The ratio map is included here as a geo-referenced tiff (GeoTIFF). The gridded data for the 2017 PGA at 10% probability can be found here, while the GSHAP data can be found here. Shedlock, K.M., Giardini, Domenico, Grünthal, Gottfried, and Zhang, Peizhan, 2000, The GSHAP Global Seismic Hazar Map, Sesimological Research Letters, 71, 679-686. https://doi.org/10.1785/gssrl.71.6.679
thumbnail
The U. S. Geological Survey (USGS) makes long-term seismic hazard forecasts that are used in building codes. The hazard models usually consider only natural seismicity; non-tectonic (man-made) earthquakes are excluded because they are transitory or too small. In the past decade, however, thousands of earthquakes related to underground fluid injection have occurred in the central and eastern U.S. (CEUS), and some have caused damage. In response, the USGS is now also making short-term forecasts that account for the hazard from these induced earthquakes. A uniform earthquake catalog is assembled by combining and winnowing pre-existing source catalogs. Seismicity statistics are analyzed to develop recurrence models,...
thumbnail
The U. S. Geological Survey (USGS) makes long-term seismic hazard forecasts that are used in building codes. The hazard models usually consider only natural seismicity; non-tectonic (man-made) earthquakes are excluded because they are transitory or too small. In the past decade, however, thousands of earthquakes related to underground fluid injection have occurred in the central and eastern U.S. (CEUS), and some have caused damage. In response, the USGS is now also making short-term forecasts that account for the hazard from these induced earthquakes. A uniform earthquake catalog is assembled by combining and winnowing pre-existing, authoritative source catalogs. Seismicity statistics are analyzed to develop recurrence...
thumbnail
Output from the 2021 National Seismic Hazard Model for Hawaii includes probabilistic seismic hazard curves calculated for a 0.02° x 0.02° grid of latitude/longitude locations across Hawaii. The new model provides an expanded suite of hazard curves for twenty-three different ground motion intensity measures, including PGA, PGV, and spectral accelerations for 0.01, 0.02, 0.03, 0.05, 0.075, 0.1, 0.15, 0.2, 0.25, 0.3, 0.4, 0.5, 0.75, 1, 1.5, 2, 3, 4, 5, 7.5 and 10 second, and eight separate soil site classes (VS30 = 1500, 1080, 760, 530, 365, 260, 185, and 150 m/sec), representing NEHRP site classes A/B, B, B/C, C, C/D, D, D/E, and E. This data set represents the hazard curves for a grid of points with a spacing...
thumbnail
Digital flood-inundation maps were created for a 7.1-mile reach of the North Fork Kentucky River at Hazard, Kentucky. The flood-inundation maps, which can be accessed through the U.S. Geological Survey (USGS) Flood Inundation Mapping Science website at https://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage on the North Fork Kentucky River at Hazard, Kentucky (USGS station number 03277500). Near-real-time stages at this streamgage may be obtained on the Internet from the USGS National Water Information System at https://waterdata.usgs.gov/ or the National Weather Service (NWS) Advanced Hydrologic...
thumbnail
The wildland fire potential (WFP) map is a raster geospatial product produced by the USDA Forest Service, Fire Modeling Institute that is intended to be used in analyses of wildfire risk or hazardous fuels prioritization at large landscapes (100s of square miles) up through regional or national scales. The WFP map builds upon, and integrates, estimates of burn probability (BP) and conditional probabilities of fire intensity levels (FILs) generated for the national interagency Fire Program Analysis system (FPA) using a simulation modeling system called the Large Fire Simulator (FSim; Finney et al. 2011). The specific objective of the 2012 WFP map is to depict the relative potential for wildfire that would be difficult...
thumbnail
Peak ground acceleration ground motion values for 50, 10, and 2 percent probability of exceedance in 50 years are converted to equivalent modified Mercalli intensity using the relationships of Worden and others (2012). Values are for NEHRP site class B/C with a VS30 = 760 m/s.
thumbnail
A seismic hazard model for South America, based on a smoothed (gridded) seismicity model, a subduction model, a crustal fault model, and a ground motion model, has been produced by the U.S. Geological Survey. These models are combined to account for ground shaking from earthquakes on known faults as well as earthquakes on un-modeled faults. This data set represents the results of calculations of hazard curves for a grid of points with a spacing of 0.1 degrees in latitude and longitude. This particular data set is for Modified Mercalli Intensity with a 50 percent probability of exceedance in 50 years. The maps and data were derived from PGA ground-motion conversions of Worden et al. (2012), and include soil amplification...
thumbnail
A seismic hazard model for South America, based on a smoothed (gridded) seismicity model, a subduction model, a crustal fault model, and a ground motion model, has been produced by the U.S. Geological Survey. These models are combined to account for ground shaking from earthquakes on known faults as well as earthquakes on un-modeled faults. This data set represents the results of calculations of hazard curves for a grid of points with a spacing of 0.1 degrees in latitude and longitude. This particular data set is for horizontal spectral response acceleration for 0.2-second period with a 2 percent probability of exceedance in 50 years.
A seismic hazard model for South America, based on a smoothed (gridded) seismicity model, a subduction model, a crustal fault model, and a ground motion model, has been produced by the U.S. Geological Survey. These models are combined to account for ground shaking from earthquakes on known faults as well as earthquakes on un-modeled faults. This data set represents the hazard curves for a grid of points with a spacing of 0.1 degrees in latitude and longitude. It represents the annual rate of exceedance versus 0.2-second spectral response acceleration.
thumbnail
A seismic hazard model for South America, based on a smoothed (gridded) seismicity model, a subduction model, a crustal fault model, and a ground motion model, has been produced by the U.S. Geological Survey. These models are combined to account for ground shaking from earthquakes on known faults as well as earthquakes on un-modeled faults. This data set represents the results of calculations of hazard curves for a grid of points with a spacing of 0.1 degrees in latitude and longitude. This particular data set is for peak ground acceleration with a 2 percent probability of exceedance in 50 years.
thumbnail
A one-year seismic hazard forecast for the Central and Eastern United States, based on induced and natural earthquakes, has been produced by the U.S. Geological Survey. The model assumes that earthquake rates calculated from several different time windows will remain relatively stationary and can be used to forecast earthquake hazard and damage intensity for the year 2016. This assessment is the first step in developing an operational earthquake forecast for the CEUS, and the analysis could be revised with updated seismicity and model parameters. Consensus input models consider alternative earthquake catalog durations, smoothing parameters, maximum magnitudes, and ground motion estimates, and represent uncertainties...
thumbnail
Digital flood-inundation maps were created for a 7.1-mile reach of the North Fork Kentucky River at Hazard, Kentucky. The flood-inundation maps, which can be accessed through the U.S. Geological Survey (USGS) Flood Inundation Mapping Science website at https://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage on the North Fork Kentucky River at Hazard, Kentucky (USGS station number 03277500). Near-real-time stages at this streamgage may be obtained on the Internet from the USGS National Water Information System at https://waterdata.usgs.gov/ or the National Weather Service (NWS) Advanced Hydrologic...
thumbnail
- Observations and treatment of various species of raptorial birds admitted to a rehabilitation facility, and of nestling barn owls observed and sampled in the field - Clotting time parameters (prothrombin time, Russell’s viper venom time, fibrinogen concentration) - Anticoagulant rodenticide residue data


map background search result map search result map Modified Mercalli Intensity based on the average of horizontal spectral response acceleration for 1.0-second period and peak ground acceleration, with 1-percent probability of exceedance in 1 year for the Central and Eastern United States Chance of damage from an earthquake in 2016 based on horizontal spectral response acceleration for 1.0-second period for the Western United States Peak ground acceleration with a 2% probability of exceedance in 50 years 0.2-second spectral response acceleration (5% of critical damping) with a 2% probability of exceedance in 50 years Comparison with the 2010 USGS preliminary model Comparison with the 1999 Global Seismic Hazard Assessment (GSHAP) model Modified Mercalli Intensity, based on peak ground acceleration, with a 50% probability of exceedance in 50 years USGS 1:24000-scale Quadrangle for Hazard, NE 1951 USGS 1:125000-scale Quadrangle for Hazard, KY 1891 Geospatial datasets and model for the flood-inundation study of the North Fork Kentucky River at Hazard, Kentucky Use of blood clotting assays to assess anticoagulant rodenticide exposure and effects in free-ranging birds of prey Shapefiles of the flood-inundation maps for the North Fork Kentucky River at Hazard, Kentucky BLM REA SLV 2013 Wildland fire potential 01. Hazard curves 07.  Modified Mercalli Intensity maps for the conterminous U.S., Alaska, and Hawaii Geospatial datasets and model for the flood-inundation study of the North Fork Kentucky River at Hazard, Kentucky Shapefiles of the flood-inundation maps for the North Fork Kentucky River at Hazard, Kentucky USGS 1:24000-scale Quadrangle for Hazard, NE 1951 BLM REA SLV 2013 Wildland fire potential 01. Hazard curves Use of blood clotting assays to assess anticoagulant rodenticide exposure and effects in free-ranging birds of prey Chance of damage from an earthquake in 2016 based on horizontal spectral response acceleration for 1.0-second period for the Western United States Modified Mercalli Intensity based on the average of horizontal spectral response acceleration for 1.0-second period and peak ground acceleration, with 1-percent probability of exceedance in 1 year for the Central and Eastern United States Comparison with the 2010 USGS preliminary model Comparison with the 1999 Global Seismic Hazard Assessment (GSHAP) model 0.2-second spectral response acceleration (5% of critical damping) with a 2% probability of exceedance in 50 years Peak ground acceleration with a 2% probability of exceedance in 50 years Modified Mercalli Intensity, based on peak ground acceleration, with a 50% probability of exceedance in 50 years 07.  Modified Mercalli Intensity maps for the conterminous U.S., Alaska, and Hawaii