Skip to main content
Advanced Search

Filters: Tags: shoreline (X) > Date Range: {"choice":"year"} (X) > partyWithName: U.S. Geological Survey - ScienceBase (X)

52 results (29ms)   

View Results as: JSON ATOM CSV
thumbnail
The data in this release re-map the beach and nearshore environment at Head of the Meadow Beach in Truro, MA and provide updated environmental context for the 2020 CoastCam installation that looks out at the coast shared by beachgoers, shorebirds, seals, and sharks. This is related to the field activity 2022-015-FA and a collaboration with the National Park Service at Cape Cod National Seashore to monitor the region that falls within the field of view of CoastCam CACO-01, which are two video cameras aimed at the beach. In March and April 2023, U.S. Geological Survey and Woods Hole Oceanographic Institute (WHOI) scientists conducted field surveys to collect topographic and bathymetric data. Images of the beach for...
thumbnail
In coastal areas of the United States, where water and land interface in complex and dynamic ways, it is common to find concentrated residential and commercial development. These coastal areas often contain various landholdings managed by Federal, State, and local municipal authorities for public recreation and conservation. These areas are frequently subjected to a range of natural hazards, which include flooding and coastal erosion. In response, the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data to calculate rates of shoreline change along the conterminous coast of the United States, and select coastlines of Alaska and Hawaii, as part of the Coastal Change Hazards priority...
thumbnail
The U.S. Geological Survey (USGS) has compiled national shoreline data for more than 20 years to document coastal change and serve the needs of research, management, and the public. Maintaining a record of historical shoreline positions is an effective method to monitor national shoreline evolution over time, enabling scientists to identify areas most susceptible to erosion or accretion. These data can help coastal managers and planners understand which areas of the coast are vulnerable to change. This data release includes a compilation of previously published historical shoreline positions for Virginia spanning 148 years (1849-1997), and two new mean high water (MHW) shorelines extracted from lidar data collected...
thumbnail
The U.S. Geological Survey (USGS) maintains shoreline positions for the United States coasts from both older sources, such as aerial photographs or topographic surveys, and contemporary sources, such as lidar-point clouds and digital elevation models. These shorelines are compiled and analyzed in the USGS Digital Shoreline Analysis System (DSAS), version 5.1 software to calculate rates of change. Keeping a record of historical shoreline positions is an effective method to monitor change over time, enabling scientists to identify areas most susceptible to erosion or accretion. These data can help coastal managers understand which areas of the coast are vulnerable to change. This data release, and other associated...
thumbnail
The data in this release re-map the beach and nearshore environment at Marconi Beach in Wellfleet, MA and provide updated environmental context for the 2021 CoastCam installation that looks out at the coast shared by beachgoers, shorebirds, seals, and sharks. This is related to the field activity 2022-014-FA and a collaboration with the National Park Service at Cape Cod National Seashore to monitor the region that falls within the field of view of CoastCam CACO-02, which are two video cameras aimed at the beach. In March 2023, U.S. Geological Survey and Woods Hole Oceanographic Institute (WHOI) scientists conducted field surveys to collect topographic and bathymetric data. Images of the beach for use in structure-from-motion...
thumbnail
The data in this release re-map the beach and nearshore environment at Marconi Beach in Wellfleet, MA and provide updated environmental context for the 2021 CoastCam installation that looks out at the coast shared by beachgoers, shorebirds, seals, and sharks. This is related to the field activity 2022-014-FA and a collaboration with the National Park Service at Cape Cod National Seashore to monitor the region that falls within the field of view of CoastCam CACO-02, which are two video cameras aimed at the beach. In March 2023, U.S. Geological Survey and Woods Hole Oceanographic Institute (WHOI) scientists conducted field surveys to collect topographic and bathymetric data. Images of the beach for use in structure-from-motion...
thumbnail
In coastal areas of the United States, where water and land interface in complex and dynamic ways, it is common to find concentrated residential and commercial development. These coastal areas often contain various landholdings managed by Federal, State, and local municipal authorities for public recreation and conservation. These areas are frequently subjected to a range of natural hazards, which include flooding and coastal erosion. In response, the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data to calculate rates of shoreline change along the conterminous coast of the United States, and select coastlines of Alaska and Hawaii, as part of the Coastal Change Hazards priority...
Categories: Data; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: Baseline, CMGP, California, CenCal, Central California, All tags...
thumbnail
The U.S. Geological Survey (USGS) has compiled national shoreline data for more than 20 years to document coastal change and serve the needs of research, management, and the public. Maintaining a record of historical shoreline positions is an effective method to monitor national shoreline evolution over time, enabling scientists to identify areas most susceptible to erosion or accretion. These data can help coastal managers and planners understand which areas of the coast are vulnerable to change. This data release includes one new mean high water (MHW) shoreline extracted from lidar data collected in 2017 for the entire coastal region of North Carolina which is divided into four subregions: northern North Carolina...
thumbnail
The data in this release re-map the beach and nearshore environment at Head of the Meadow Beach in Truro, MA and provide updated environmental context for the 2020 CoastCam installation that looks out at the coast shared by beachgoers, shorebirds, seals, and sharks. This is related to the field activity 2022-015-FA and a collaboration with the National Park Service at Cape Cod National Seashore to monitor the region that falls within the field of view of CoastCam CACO-01, which are two video cameras aimed at the beach. In March and April 2023, U.S. Geological Survey and Woods Hole Oceanographic Institute (WHOI) scientists conducted field surveys to collect topographic and bathymetric data. Images of the beach for...
thumbnail
The data in this release re-map the beach and nearshore environment at Marconi Beach in Wellfleet, MA and provide updated environmental context for the 2021 CoastCam installation that looks out at the coast shared by beachgoers, shorebirds, seals, and sharks. This is related to the field activity 2022-014-FA and a collaboration with the National Park Service at Cape Cod National Seashore to monitor the region that falls within the field of view of CoastCam CACO-02, which are two video cameras aimed at the beach. In March 2023, U.S. Geological Survey and Woods Hole Oceanographic Institute (WHOI) scientists conducted field surveys to collect topographic and bathymetric data. Images of the beach for use in structure-from-motion...
thumbnail
In coastal areas of the United States, where water and land interface in complex and dynamic ways, it is common to find concentrated residential and commercial development. These coastal areas often contain various landholdings managed by Federal, State, and local municipal authorities for public recreation and conservation. These areas are frequently subjected to a range of natural hazards, which include flooding and coastal erosion. In response, the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data to calculate rates of shoreline change along the conterminous coast of the United States, and select coastlines of Alaska and Hawaii, as part of the Coastal Change Hazards priority...
Categories: Data; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: Baseline, CMGP, California, CenCal, Central California, All tags...
thumbnail
In coastal areas of the United States, where water and land interface in complex and dynamic ways, it is common to find concentrated residential and commercial development. These coastal areas often contain various landholdings managed by Federal, State, and local municipal authorities for public recreation and conservation. These areas are frequently subjected to a range of natural hazards, which include flooding and coastal erosion. In response, the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data to calculate rates of shoreline change along the conterminous coast of the United States, and select coastlines of Alaska and Hawaii, as part of the Coastal Change Hazards priority...
thumbnail
The data in this release re-map the beach and nearshore environment at Head of the Meadow Beach in Truro, MA and provide updated environmental context for the 2020 CoastCam installation that looks out at the coast shared by beachgoers, shorebirds, seals, and sharks. This is related to the field activity 2022-015-FA and a collaboration with the National Park Service at Cape Cod National Seashore to monitor the region that falls within the field of view of CoastCam CACO-01, which are two video cameras aimed at the beach. In March and April 2023, U.S. Geological Survey and Woods Hole Oceanographic Institute (WHOI) scientists conducted field surveys to collect topographic and bathymetric data. Images of the beach for...
thumbnail
The data in this release re-map the beach and nearshore environment at Head of the Meadow Beach in Truro, MA and provide updated environmental context for the 2020 CoastCam installation that looks out at the coast shared by beachgoers, shorebirds, seals, and sharks. This is related to the field activity 2022-015-FA and a collaboration with the National Park Service at Cape Cod National Seashore to monitor the region that falls within the field of view of CoastCam CACO-01, which are two video cameras aimed at the beach. In March and April 2023, U.S. Geological Survey and Woods Hole Oceanographic Institute (WHOI) scientists conducted field surveys to collect topographic and bathymetric data. Images of the beach for...
thumbnail
The U.S. Geological Survey (USGS) has compiled national shoreline data for more than 20 years to document coastal change and serve the needs of research, management, and the public. Maintaining a record of historical shoreline positions is an effective method to monitor national shoreline evolution over time, enabling scientists to identify areas most susceptible to erosion or accretion. These data can help coastal managers and planners understand which areas of the coast are vulnerable to change. This data release includes one new mean high water (MHW) shoreline extracted from lidar data collected in 2017 for the entire coastal region of North Carolina which is divided into four subregions: northern North Carolina...
thumbnail
The U.S. Geological Survey (USGS) has compiled national shoreline data for more than 20 years to document coastal change and serve the needs of research, management, and the public. Maintaining a record of historical shoreline positions is an effective method to monitor national shoreline evolution over time, enabling scientists to identify areas most susceptible to erosion or accretion. These data can help coastal managers and planners understand which areas of the coast are vulnerable to change. This data release includes a compilation of previously published historical shoreline positions for Virginia spanning 148 years (1849-1997), and two new mean high water (MHW) shorelines extracted from lidar data collected...
thumbnail
The U.S. Geological Survey (USGS) has compiled national shoreline data for more than 20 years to document coastal change and serve the needs of research, management, and the public. Maintaining a record of historical shoreline positions is an effective method to monitor national shoreline evolution over time, enabling scientists to identify areas most susceptible to erosion or accretion. These data can help coastal managers and planners understand which areas of the coast are vulnerable to change. This data release includes one new mean high water (MHW) shoreline extracted from lidar data collected in 2017 for the entire coastal region of North Carolina which is divided into four subregions: northern North Carolina...
thumbnail
In coastal areas of the United States, where water and land interface in complex and dynamic ways, it is common to find concentrated residential and commercial development. These coastal areas often contain various landholdings managed by Federal, State, and local municipal authorities for public recreation and conservation. These areas are frequently subjected to a range of natural hazards, which include flooding and coastal erosion. In response, the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data to calculate rates of shoreline change along the conterminous coast of the United States, and select coastlines of Alaska and Hawaii, as part of the Coastal Change Hazards priority...
thumbnail
In coastal areas of the United States, where water and land interface in complex and dynamic ways, it is common to find concentrated residential and commercial development. These coastal areas often contain various landholdings managed by Federal, State, and local municipal authorities for public recreation and conservation. These areas are frequently subjected to a range of natural hazards, which include flooding and coastal erosion. In response, the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data to calculate rates of shoreline change along the conterminous coast of the United States, and select coastlines of Alaska and Hawaii, as part of the Coastal Change Hazards priority...
thumbnail
Low-altitude (30-120 meters above ground level) digital images of Town Neck Beach in Sandwich, Massachusetts, were obtained with a series of cameras mounted on small unmanned aerial systems (UAS, also known as a drone). Imagery was collected at close to low tide on five days to observe changes in beach and dune morphology. The images were geolocated by using the single-frequency geographic positioning system aboard the UAS. Ground control points (GCPs) were established by using temporary targets on the ground, which were located by using a real-time kinematic global navigation satellite system (RTK-GNSS) base station and rovers. The GCPs can be used as constraints during photogrammetric processing. Transect points...


map background search result map search result map Geotagged Low-Altitude Aerial Imagery From Unmanned Aerial System Flights Over Town Neck Beach, in Sandwich, Massachusetts, on 2016-03-30 Baseline for the islands of of Vieques and Culebra, Puerto Rico, generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.1 Short-term shoreline change rates for the Virginia coastal region using the Digital Shoreline Analysis System version 5.1 Baseline for the Virginia coastal region, generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.1 Topographic and bathymetric data, structure from motion imagery, and ground control data collected at Head of the Meadow Beach, Truro, Massachusetts in March and April 2023, U.S. Geological Survey Field Activity 2023-011-FA Bathymetric data and grid of offshore Head of the Meadow Beach, Truro, MA on April 7, 2023 Digital Surface Model representing Head of the Meadow Beach, Truro, MA on March 10, 2023 Orthomosaic representing Head of the Meadow Beach, Truro, MA on March 10, 2023 Topographic and bathymetric data, structure from motion imagery, and ground control data collected at Marconi Beach, Wellfleet, Massachusetts in March 2023, U.S. Geological Survey Field Activity 2023-012-FA Orthomosaic representing Marconi Beach, Wellfleet, MA on March 22, 2023 Low-altitude aerial imagery collected from a Helikite at Marconi Beach, Wellfleet, MA on March 22, 2023 Baseline for the Central California coastal region generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.0 Intersects for the Central California coastal region generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.0 Long-term shoreline change rates for the Central California coastal region using the Digital Shoreline Analysis System version 5.0 Shorelines of the Northern California coastal region (1854-2016) used in shoreline change analysis Baseline for the Southern California coastal region generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.0 Shorelines of the Southern California coastal region (1852-2016) used in shoreline change analysis 2017 lidar-derived mean high water shoreline for the coast of North Carolina from Cape Fear to the South Carolina border (NCwest) Long and short-term shoreline change rate transects for the southern North Carolina coastal region (NCsouth), calculated with and without the proxy-datum bias using the Digital Shoreline Analysis System version 5.1 2017 lidar-derived mean high water shoreline for the coast of North Carolina from the Virginia border to Cape Hatteras (NCnorth) Low-altitude aerial imagery collected from a Helikite at Marconi Beach, Wellfleet, MA on March 22, 2023 Digital Surface Model representing Head of the Meadow Beach, Truro, MA on March 10, 2023 Topographic and bathymetric data, structure from motion imagery, and ground control data collected at Head of the Meadow Beach, Truro, Massachusetts in March and April 2023, U.S. Geological Survey Field Activity 2023-011-FA Orthomosaic representing Head of the Meadow Beach, Truro, MA on March 10, 2023 Orthomosaic representing Marconi Beach, Wellfleet, MA on March 22, 2023 Bathymetric data and grid of offshore Head of the Meadow Beach, Truro, MA on April 7, 2023 Topographic and bathymetric data, structure from motion imagery, and ground control data collected at Marconi Beach, Wellfleet, Massachusetts in March 2023, U.S. Geological Survey Field Activity 2023-012-FA Geotagged Low-Altitude Aerial Imagery From Unmanned Aerial System Flights Over Town Neck Beach, in Sandwich, Massachusetts, on 2016-03-30 Baseline for the islands of of Vieques and Culebra, Puerto Rico, generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.1 2017 lidar-derived mean high water shoreline for the coast of North Carolina from the Virginia border to Cape Hatteras (NCnorth) Short-term shoreline change rates for the Virginia coastal region using the Digital Shoreline Analysis System version 5.1 Baseline for the Virginia coastal region, generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.1 Long and short-term shoreline change rate transects for the southern North Carolina coastal region (NCsouth), calculated with and without the proxy-datum bias using the Digital Shoreline Analysis System version 5.1 Shorelines of the Northern California coastal region (1854-2016) used in shoreline change analysis Shorelines of the Southern California coastal region (1852-2016) used in shoreline change analysis Baseline for the Southern California coastal region generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.0 Intersects for the Central California coastal region generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.0 Long-term shoreline change rates for the Central California coastal region using the Digital Shoreline Analysis System version 5.0 Baseline for the Central California coastal region generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.0