Skip to main content
Advanced Search

Filters: partyWithName: Lucas Fortini (X) > Types: OGC WMS Layer (X)

15 results (35ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
Hawaiʻi is considered a worldwide biodiversity hotspot, with nearly 90 percent of its native plants found nowhere else in the world. However, about half of these native plants are imperiled by threats including human development, non-native species, and climate change. Through this project, scientists modeled the relative vulnerability of over 1,000 native plant species to the effects of climate change. A panel of experts in Hawaiian plant species assisted with the development of the model and verified its results. From the model, researchers were able to develop a vulnerability score for each plant species and identify categories of species with high, medium, and low vulnerability to climate change. This information...
thumbnail
Haleakalā National Park (HNP) and the surrounding landscape spans many different land cover types, some of which are undergoing vegetation changes that can reduce the amount of water that infiltrates into soil. Decreased soil infiltration can lead to the erosion of terrestrial habitats, increases in the amount of sediment entering aquatic habitats, and flooding of downstream areas as runoff increases after storms. Currently, HNP managers are attempting to control runoff and erosion to avoid loss and damage within park boundaries and parks located downstream. Managers in HNP have expressed a need for information on current and future runoff and erosion risk to help prioritize management within the park and other...
thumbnail
Over the past century, Hawaiʻi has experienced a pronounced decline in precipitation and stream flow and a number of severe droughts. These changes can have wide-reaching implications, affecting the water supply, native vegetation and wildlife, wildfire patterns, and the spread of invasive species. Several climate-related factors are influencing Hawaiˈi’s landscapes and contributing to these changes. These include climate change, climate variability, and drought (referred to collectively as CCVD). Climate variability describes how the climate fluctuates on a yearly basis around average values, while climate change describes patterns of long-term continuous change in the average. While it is understood that CCVD...
thumbnail
Projected climate-based range change between 1990-2010 and 2080-2100 for Hawaiian forest birds. Values for the raster include: 1- current climate range projected to be loss by end-of-century; 2- persisting climate-based range for species between now and end-of-century; 3- areas gained in climate-based range for the species between now and end-of-century. Species projected ranges are clipped by currently available compatible vegetation habitat. Manuscript output: Figure 1
thumbnail
Hawaiian forest birds are imperiled, with fewer than half the original > 40 species remaining extant. Recent studies document ongoing rapid population decline and project complete climate-based range losses for the critically endangered Kaua’i endemics ‘akeke’e (Loxops caeruleirostris) and ‘akikiki (Oreomystis bairdi) by end-of-century due to projected warming. Climate change facilitates the upward expansion of avian malaria into native high elevation forests where disease was historically absent. While intensified conservation efforts attempt to safeguard these species and their habitats, the magnitude of potential loss and the urgency of this situation require all conservation options to be seriously considered....
thumbnail
This raster indicates modeled habitat for various species under current and future conditions. Using the Price et al. (2012) parameters, we modeled species ranges as a function of elevation, temperature, and precipitation as described in Jacobi et al. (2016). Our methods departed slightly from their procedure in that we did not exclude non-pioneer-classified species from young lava flows. Jacobi, J.J., Camp, R.J., Berkowitz, S.P., Brinck, K.W., Fortini, L.B., Price, J.P., and Loh, R.M. 2016. Assess the potential impacts of projected climate change on vegetation management strategies within Hawaii Volcanoes National Park. PICSC Final Report. URL: https://nccwsc.usgs.gov/ Price, J.P., Jacobi, J.D., Gon, S.M., III,...
thumbnail
Precipitation in Hawaiʻi’s higher elevation upland areas provides needed water to both people and ecosystems. Once it reaches the ground, rain can either run off and contribute to water flow in streams, or it can infiltrate into the ground and provide water for plants and recharge aquifers and groundwater. The exact route that water takes is controlled by many factors, including the duration and intensity of rainfall, the topography of the land, soil properties, and vegetation. The introduction and spread of invasive plants and animals in Hawaiian forests, which alters the water-use and soil characteristics of ecosystems, can have large impacts on downstream water users. Increased demand and competition for limited...
thumbnail
In Hawaiʽi and elsewhere, research efforts have focused on two main approaches to determine the potential impacts of climate change on individual species: estimating species vulnerabilities and projecting responses of species to expected changes. We integrated these approaches by defining vulnerability as the inability of species to exhibit any of the responses necessary for persistence under climate change (i.e., tolerate projected changes, endure in microrefugia, or migrate to new climate-compatible areas, but excluding evolutionary adaptation). To operationalize this response-based definition of species vulnerability within a landscape-based analysis, we used current and future climate envelopes for each species...
thumbnail
Hawaiʻi’s native forests supply the state with freshwater, support cultural practices, and are home to more than 10,000 plants and animals found nowhere else in the world. However, they are also threatened by the spread of invasive species and may be vulnerable to shifting temperature and rainfall patterns brought about by climate change. Through this project, scientists sought to better understand how native and non-native forests in Hawaiʻi will respond to climate change. Researchers used field data from two long-term monitoring sites in Hawaiʻi Volcanoes National Park to model the effects of projected climate change on two forest ecosystems, one dominated by the native ʻōhiʻa tree and the other by the invasive...
thumbnail
Past analysis has shown that temperature-dependent avian malaria is likely to reduce overall available Hawaiian forest bird habitat with temperature increases. We used a comprehensive database of forest bird sightings (over 42,000 points), the most up to date regional climate projections and state-of-the-art ensemble species distribution models to project shifts in distribution of all Hawaiian forest bird species due to climate change. Our results show that all forest bird species are expected to suffer large range losses by end of this century with single island endemics at a greater risk than more widespread species. Because most species require structurally complex forest habitat that may take decades to develop,...
thumbnail
Current forest bird number of species based on modeled range and available primary habitat of high model reliability species. Manuscript outputs: Figures 2a, 2b, 3b, 4, 5
thumbnail
Hawaiʻi is considered a worldwide biodiversity hotspot, with nearly 90 percent of its native plants found nowhere else in the world. However, about half of these native plants are imperiled by threats including human development, non-native species, and climate change. Through this project, scientists modeled the relative vulnerability of over 1,000 native plant species to the effects of climate change. A panel of experts in Hawaiian plant species assisted with the development of the model and verified its results. From the model, researchers were able to develop a vulnerability score for each plant species and identify categories of species with high, medium, and low vulnerability to climate change. This information...
thumbnail
Droughts in the Hawaiian Islands can enhance wildfire risk, diminish freshwater resources, and devastate threatened and endangered species on land and in nearshore ecosystems. During periods of drought, cloud-water interception, or fog drip (the process by which water droplets accumulate on the leaves and branches of plants and then drip to the ground) in Hawai‘i’s rain forests may play an important role in providing moisture for plants, reducing wildfire risk within the fog zone, and contributing to groundwater recharge (the process by which water moves downward from the surface through the ground to the groundwater table) that sustains water flow in streams during dry periods. Estimates of the changes in water...
thumbnail
Hawaiʻi is known as the “endangered species capital of the world,” an unwelcomed label brought on by more than a century of habitat destruction, invasive species spread, and pollinator and seed disperser declines. Hawaiʿi is home to 400 endangered plant species, most of which are found nowhere else in the world. Conservation managers have spent decades putting enormous effort into carefully reintroducing thousands of rare plants into protected forests, but the ability of reintroduced populations to persist over the long-term is unknown, especially as climate change shifts patterns of temperature, rainfall and species interactions. Managers need more information to identify locations that will be the most suitable...


    map background search result map search result map Understanding the Response of Native and Non‐Native Forests to Climate Variability and Change Establishing Climate Change Vulnerability Rankings for Hawaiian Native Plants A landscape-based assessment of climate change vulnerability for native Hawaiian plants Shifting Hawaiian forest bird distribution under climate change and the need to consider novel conservation strategies Individual forest bird species distribution projections Forest Bird Challenges and Opportunities dataset Individual forest bird species ensemble projections Influences of Climate Change, Climate Variability, and Drought on Human Communities and Ecosystems in Hawaiʻi Changes in Water Flow through Hawaiian Forests due to Invasive Species and Changing Rainfall Patterns Effects of Drought on Soil Moisture and Water Resources in Hawai‘i Modeled ranges of Hawaiian plant species under current and future conditions under three climate downscaling scenarios Assessing the potential of translocating vulnerable forest birds  by searching for novel and enduring climatic ranges Establishing Climate Change Vulnerability Rankings for Hawaiian Native Plants Identifying the Risk of Runoff and Erosion in Hawaiʻi’s National Parks Assessing the Effects of Management Interventions and Climate Variability on Reintroduced Hawaiian Rare Plants Changes in Water Flow through Hawaiian Forests due to Invasive Species and Changing Rainfall Patterns Effects of Drought on Soil Moisture and Water Resources in Hawai‘i Influences of Climate Change, Climate Variability, and Drought on Human Communities and Ecosystems in Hawaiʻi A landscape-based assessment of climate change vulnerability for native Hawaiian plants Establishing Climate Change Vulnerability Rankings for Hawaiian Native Plants Understanding the Response of Native and Non‐Native Forests to Climate Variability and Change Establishing Climate Change Vulnerability Rankings for Hawaiian Native Plants Individual forest bird species distribution projections Shifting Hawaiian forest bird distribution under climate change and the need to consider novel conservation strategies Forest Bird Challenges and Opportunities dataset Individual forest bird species ensemble projections Assessing the potential of translocating vulnerable forest birds  by searching for novel and enduring climatic ranges Assessing the Effects of Management Interventions and Climate Variability on Reintroduced Hawaiian Rare Plants Modeled ranges of Hawaiian plant species under current and future conditions under three climate downscaling scenarios Identifying the Risk of Runoff and Erosion in Hawaiʻi’s National Parks