Skip to main content
Advanced Search

Filters: Date Range: {"choice":"week"} (X) > partyWithName: U.S. Geological Survey - ScienceBase (X) > partyWithName: Water Resources (X) > Types: Map Service (X)

Folder: ROOT ( Show direct descendants )

7 results (12ms)   

Location

Folder
ROOT
View Results as: JSON ATOM CSV
thumbnail
Geospatial datasets were developed to estimate the altitude of the top of bedrock, altitude of the top of the Paradox salt, altitude of the water table in the alluvial aquifer, and the thickness and extent of saturated alluvium in the Paradox Valley in western Colorado. This study was completed by the U.S. Geological Survey (USGS) in cooperation with the Bureau of Reclamation for modeling of brine discharge to the Dolores River (Heywood and others, 2024; Paschke and others, 2024). One point dataset and 11 surfaces (shapefiles or rasters) are published in this data release. The point dataset (Paradox_well_data.zip) contains water-level and geologic data for groundwater, observation, test, and production wells in...
thumbnail
Nitrogen, phosphorus, and suspended-sediment loads, and changes in loads, in major rivers across the Chesapeake Bay watershed have been calculated using monitoring data from the Chesapeake Bay River Input Monitoring (RIM) Network stations for the period 1985 through 2023. Nutrient and suspended-sediment loads and changes in loads were determined by applying a weighted regression approach called WRTDS (Weighted Regression on Time, Discharge, and Season). The load results represent the total mass of nitrogen, phosphorus, and suspended sediment that was exported from each of the RIM watersheds and were estimated using the WRTDS method with Kalman filtering. To determine the trend in loads, the annual load results are...
thumbnail
The shapefiles in this dataset represent the spatial distribution of mean annual water-budget components, in inches, for Kauaʻi, Oʻahu, Molokaʻi, Lānaʻi, Maui, and the Island of Hawaiʻi, for a set of recent and future climate conditions, and 2020 land cover. The four main climate scenarios used in the water-budget analyses include a reference climate scenario representative of recent conditions during 1978–2007, hereinafter the 1978–2007 scenario, and three downscaled future-climate projections that span a range of future-climate conditions for each island. The three future-climate projections include (1) a mid-century scenario using projected rainfall conditions representative of phase 5 of the Coupled Model Intercomparison...
thumbnail
These shapefiles represent the frequency characteristics of soil moisture, evapotranspiration, and climatic water deficit for Kauaʻi, Oʻahu, Molokaʻi, Maui, and the Island of Hawaiʻi for a set of water-budget scenarios that characterize unique combinations of rainfall and land-cover conditions. Four water-budget scenarios were developed to quantify the effects of drought on soil moisture, evapotranspiration, and climatic water deficit for each island as follows: (1) a reference condition, the Non-Drought scenario, consisting of rainfall conditions during 1990–97 and 2003–06 and 2020 land cover, (2) rainfall conditions representative of the driest periods during 1920–2012 and 2020 land cover, (3) rainfall conditions...
thumbnail
Optimal hydrograph separation (OHS) is a two-component, hydrograph separation method that uses a two-parameter, recursive digital filter (RDF) constrained via chemical mass balance to estimate the base flow contribution to a stream or river (Rimmer and Hartman, 2014; Raffensperger et al., 2017). A recursive digital filter distinguishes between high-frequency and low-frequency discharge data within a hydrograph, where high-frequency data corresponds to quick flow or storms and low-frequency data corresponds to base flow. The two parameters within the RDF are alpha and beta, both are unitless. Alpha is defined as the recession constant and typically found through recession analysis. For the purposes of this data release...
thumbnail
These shapefiles represent the spatial distribution of mean annual groundwater recharge, in inches, for Kauaʻi, Oʻahu, Molokaʻi, Maui, and the Island of Hawaiʻi for a set of water-budget scenarios that characterize unique combinations of drought and land-cover conditions. Two water-budget scenarios were developed to quantify the effects of severe drought and future climate conditions on groundwater recharge for each island as follows: (1) rainfall conditions representative of the driest conditions during 1920–2012 and 2020 land cover, and (2) rainfall conditions representative of the driest conditions during a future dry-climate condition and 2020 land cover. Each drought condition was combined with two hypothetical...
thumbnail
Removal of leaf-litter may help municipalities reduce phosphorus loads. Catch-basin cleaning and street cleaning are two commonly used Best Management Practices that could be modified to remove leaves and qualify for additional load-reduction credits. This Data Release contains four tab-delimited .txt files containing additional information about the study area, characteristics of municipal street solids, and load-reduction estimates from increased catch basin and street cleaning practices that are not available in the associated report. This Data Release also contains a compressed file, "EngBrk_ModelArchive.7z", which archives the model developed and used for the project. The four .txt table files are: (1) "VT_LU_data.txt",...


    map background search result map search result map Base flow estimation via optimal hydrograph separation at CONUS watersheds and comparison to the National Hydrologic Model - Precipitation-Runoff Modeling System by HRU calibrated version Data Supporting Phosphorus Load-Reduction Estimates from Leaf-Litter Removal in Central and Northwestern Vermont Geospatial datasets developed for a hydrogeologic conceptual model of brine discharge to the Dolores River, Paradox Valley, Colorado Mean annual water-budget components for Kauaʻi, Oʻahu, Molokaʻi, Lānaʻi, Maui, and the Island of Hawaiʻi for a set of recent and future climate conditions, and 2020 land cover Mean annual groundwater recharge rates for Kauaʻi, Oʻahu, Molokaʻi, Maui, and the Island of Hawaiʻi, for a set of drought and land-cover conditions Frequency characteristics of soil moisture, evapotranspiration, and climatic water deficit for Kauaʻi, Oʻahu, Molokaʻi, Maui, and the Island of Hawaiʻi, for a set of rainfall and land-cover conditions Nitrogen, phosphorus, and suspended-sediment loads and trends measured at the Chesapeake Bay River Input Monitoring stations: Water years 1985-2023 Geospatial datasets developed for a hydrogeologic conceptual model of brine discharge to the Dolores River, Paradox Valley, Colorado Data Supporting Phosphorus Load-Reduction Estimates from Leaf-Litter Removal in Central and Northwestern Vermont Mean annual water-budget components for Kauaʻi, Oʻahu, Molokaʻi, Lānaʻi, Maui, and the Island of Hawaiʻi for a set of recent and future climate conditions, and 2020 land cover Mean annual groundwater recharge rates for Kauaʻi, Oʻahu, Molokaʻi, Maui, and the Island of Hawaiʻi, for a set of drought and land-cover conditions Frequency characteristics of soil moisture, evapotranspiration, and climatic water deficit for Kauaʻi, Oʻahu, Molokaʻi, Maui, and the Island of Hawaiʻi, for a set of rainfall and land-cover conditions Nitrogen, phosphorus, and suspended-sediment loads and trends measured at the Chesapeake Bay River Input Monitoring stations: Water years 1985-2023 Base flow estimation via optimal hydrograph separation at CONUS watersheds and comparison to the National Hydrologic Model - Precipitation-Runoff Modeling System by HRU calibrated version