Skip to main content
Advanced Search

Filters: Tags: topography (X) > Date Range: {"choice":"year"} (X) > Types: OGC WMS Layer (X) > partyWithName: U.S. Geological Survey - ScienceBase (X)

35 results (16ms)   

View Results as: JSON ATOM CSV
thumbnail
In 2004, about 90 migrating elk drowned after attempting to cross thin ice on the Mores Creek arm of Lucky Peak Lake upstream of the Highway 21 bridge. To better understand the depths over a range of reservoir pool elevations in the Mores Creek Arm, the U.S. Geological Survey, in cooperation with the Lucky Peak Power Plant Project, conducted high-resolution multibeam echosounder (MBES) bathymetric surveys on the Mores Creek arm on Lucky Peak Lake. The MBES data will assist reservoir managers and wildlife biologists with regulating reservoir water surface elevations (WSE) to support successful big game migration across Mores Creek on Lucky Peak Lake. Data collection provided nearly 100 percent coverage of bed elevations...
thumbnail
This imagery dataset consists of 3-meter resolution, lidar-derived imagery of the Pittsburgh East 30 x 60 minute quadrangle in Pennsylvania. The source data used to construct this imagery consists of 1-meter resolution Lidar-derived digital elevation models (DEMs). The lidar source data were compiled from different acquisitions published between 2020 and 2021 and downloaded from the USGS National Map TNM Download. The data were processed using geographic information systems (GIS) software. The data is projected in WGS 1984 Web Mercator. This representation illustrates the terrain as a hillshade with contrast adjusted to highlight local relief according to a topographic position index (TPI) calculation.
thumbnail
On February 14, 2019, just before 2:56 am local time (Pacific Standard Time), a landslide initiated from the natural hillslopes above the City of Sausalito, California. The landslide, properly identified as a debris flow, overran a road (Sausalito Boulevard) located immediately below the landslide source area, and impacted and destroyed several residential structures. One person was located in one of the residences and survived the disaster after being transported in their home down the slope. The U.S. Geological Survey responded to this event within hours of the landslide and provided situational awareness of possible secondary landslide hazards associated with the event. The USGS also rapidly mobilized its topographic...
thumbnail
This portion of the USGS data release presents topography data collected during surveys performed in the Columbia River littoral cell, Washington and Oregon, in 2019 (USGS Field Activity Number 2019-632-FA). Topographic profiles were collected by walking along survey lines with global navigation satellite system (GNSS) receivers mounted on backpacks. Prior to data collection, vertical distances between the GNSS antennas and the ground were measured using a tape measure. Hand-held data collectors were used to log raw data and display navigational information allowing surveyors to navigate survey lines spaced at 100- to 1000-m intervals along the beach. Profiles were surveyed from the landward edge of the study area...
thumbnail
This imagery dataset consists of 3-meter resolution, lidar-derived imagery of the State College 30 x 60 minute quadrangle in Pennsylvania. The source data used to construct this imagery consists of 1-meter resolution lidar-derived digital elevation models (DEMs). The lidar source data were compiled from different acquisitions published between 2016 and 2019 and downloaded from the USGS National Map TNM Download. The data were processed using geographic information systems (GIS) software. The data is projected in WGS 1984 Web Mercator. This representation illustrates the terrain as a hillshade with contrast adjusted to highlight local relief according to a topographic position index (TPI) calculation.
thumbnail
This imagery dataset consists of 3-meter resolution, lidar-derived imagery of the Lewisburg 30 x 60 minute quadrangle in Virginia and West Virginia. The source data used to construct this imagery consists of 1-meter resolution lidar-derived digital elevation models (DEMs). The lidar source data were compiled from different acquisitions published between 2020 and 2021. The data were processed using geographic information systems (GIS) software. The data is projected in WGS 1984 Web Mercator. This representation illustrates the terrain as a hillshade with contrast adjusted to highlight local relief according to a topographic position index (TPI) calculation.
thumbnail
This imagery dataset consists of 3-meter resolution, lidar-derived imagery of the Johnstown 30 x 60 minute quadrangle in Pennsylvania. The source data used to construct this imagery consists of 1-meter resolution lidar-derived digital elevation models (DEMs). The lidar source data were compiled from different acquisitions published in 2020 and downloaded from the USGS National Map TNM Download. The data were processed using geographic information systems (GIS) software. The data is projected in WGS 1984 Web Mercator. This representation illustrates the terrain as a hillshade with contrast adjusted to highlight local relief according to a topographic position index (TPI) calculation.
thumbnail
This data release presents beach topography and nearshore bathymetry data from repeated surveys performed by a team of scientists from the U.S. Geological Survey, Washington State Department of Ecology, and Oregon State University in the Columbia River littoral cell (CRLC), Washington and Oregon. The CRLC extends approximately 165 kilometers between Point Grenville (PG), Washington, and Tillamook Head (TH), Oregon (Figure 1A). The CRLC consists of four wide, gently sloping, beaches, or sub-cells, separated by the entrances of Grays Harbor, Willapa Bay, and the Columbia River. Areas were designated within a portion of each sub-cell and surveyed along a series of shore-perpendicular survey lines spaced at 100- to...
thumbnail
This portion of the USGS data release presents topography data collected during surveys performed in the Columbia River littoral cell, Washington and Oregon, in 2021 (USGS Field Activity Number 2021-632-FA). Topographic profiles were collected by walking along survey lines with global navigation satellite system (GNSS) receivers mounted on backpacks. Prior to data collection, vertical distances between the GNSS antennas and the ground were measured using a tape measure. Hand-held data collectors were used to log raw data and display navigational information allowing surveyors to navigate survey lines spaced at 100- to 1000-m intervals along the beach. Profiles were surveyed from the landward edge of the study area...
thumbnail
In 2016, the U.S. Army Corps of Engineers (USACE) started collecting high-resolution multibeam echosounder (MBES) data on Lake Koocanusa. The survey originated near the International Boundary (River Mile (RM) 271.0) and extended down the reservoir, hereinafter referred to as downstream, about 1.4 miles downstream of the Montana 37 Highway Bridge near Boulder Creek (about RM 253). USACE continued the survey in 2017, completing a reach that extended from about RM 253 downstream to near Tweed Creek (RM 244.5). In 2018, the U.S. Geological Survey (USGS) Idaho Water Science Center completed the remaining portion of the reservoir from RM 244.5 downstream to Libby Dam (RM 219.9). The MBES data collected in 2016 and 2017...
thumbnail
This imagery dataset consists of 3-meter resolution, lidar-derived imagery of the Cumberland 30 x 60 minute quadrangle in Pennsylvania, West Virginia and Maryland. The source data used to construct this imagery consists of 1-meter lidar-derived digital elevation models (DEMs). The lidar source data were compiled from different acquisitions published between 2019 and 2023. The data were processed using geographic information systems (GIS) software. The data is projected in WGS 1984. This representation illustrates the terrain as a hillshade with contrast adjusted to highlight local relief according to a topographic position index (TPI) calculation.
thumbnail
In October 2023, the U.S. Geological Survey Idaho Water Science Center (IDWSC), in cooperation with Lucky Peak Power Plant Project (LPPPP), completed bathymetric and topographic surveys at two dam intake structures using multibeam bathymetry and boat-mounted Light Detection and Ranging (LiDAR). Dam operators indicated a possibility that sediment aggradation was occurring near the intake structures that allow water to pass through the dam. The bathymetric and topographic data generally include complete coverage near the intake structures and banklines near Lucky Peak Dam.
thumbnail
This imagery dataset consists of 3-meter resolution, lidar-derived imagery of the Hagerstown 30 x 60 minute quadrangle in Pennsylvania, Maryland, and part of West Virginia. The source data used to construct this imagery consists of 1-meter resolution lidar-derived digital elevation models (DEMs). The lidar source data were compiled from different acquisitions published between 2016 and 2023. The data were processed using geographic information systems (GIS) software. The data is projected in WGS 1984 Web Mercator. This representation illustrates the terrain as a hillshade with contrast adjusted to highlight local relief according to a topographic position index (TPI) calculation. First release: 2012 Revised: February...
thumbnail
This imagery dataset consists of 3-meter resolution, lidar-derived imagery of the Bluefield 30 x 60 minute quadrangle in West Virginia and Virginia. The source data used to construct this imagery consists of 1-meter lidar-derived digital elevation models (DEMs). The lidar source data were compiled from different acquisitions published between 2020 and 2022. The data were processed using geographic information systems (GIS) software. The data is projected in WGS 1984 Web Mercator. This representation illustrates the terrain as a hillshade with contrast adjusted to highlight local relief according to a topographic position index (TPI) calculation.
thumbnail
This imagery dataset consists of 3-meter resolution, lidar-derived imagery of the Marlinton 30 x 60 minute quadrangle in West Virginia. The source data used to construct this imagery consists of 1-meter resolution lidar-derived digital elevation models (DEMs). The lidar source data were compiled from different acquisitions published between 2020 and 2021. The data were processed using geographic information systems (GIS) software. The data is projected in WGS 1984 Web Mercator. This representation illustrates the terrain as a hillshade with contrast adjusted to highlight local relief according to a topographic position index (TPI) calculation.


map background search result map search result map Beach topography and nearshore bathymetry of the Columbia River littoral cell, Washington and Oregon (ver. 4.0, January 2024) Terrestrial LIDAR Data Set of the February 14, 2019 Sausalito Boulevard Landslide, Sausalito, California Beach topography of the Columbia River littoral cell, Washington and Oregon, 2019 U.S. Geological Survey and U.S. Army Corps of Engineers Bathymetric Survey of Lake Koocanusa, Lincoln County, Montana, 2016-2018 Mores Creek Arm Bathymetric Survey, Lucky Peak Lake, Boise County, Idaho, May 11 - 13, 2021 Beach topography of the Columbia River littoral cell, Washington and Oregon, 2021 Enhanced Terrain Imagery of the Hagerstown 30 x 60 Minute Quadrangle from Lidar-Derived Elevation Models at 3-Meter Resolution (ver. 1.1, February 2024) Enhanced Terrain Imagery of the Johnstown 30 x 60 Minute Quadrangle from Lidar-Derived Elevation Models at 3-Meter Resolution Enhanced Terrain Imagery of the Pittsburgh East 30 x 60 Minute Quadrangle from Lidar-Derived Elevation Models at 3-Meter Resolution Bathymetric and Topographic Surveys at Lucky Peak Lake Intake Structures, Boise County, Idaho, 2023 Enhanced Terrain Imagery of the State College 30 x 60 Minute Quadrangle from Lidar-Derived Elevation Models at 3-Meter Resolution Enhanced Terrain Imagery of the Lewisburg 30 x 60 Minute Quadrangle from Lidar-Derived Elevation Models at 3-Meter Resolution Enhanced Terrain Imagery of the Cumberland 30 x 60 Minute Quadrangle from Lidar-Derived Elevation Models at 3-Meter Resolution Enhanced Terrain Imagery of the Marlinton 30 x 60 Minute Quadrangle from Lidar-Derived Elevation Models at 3-Meter Resolution Enhanced Terrain Imagery of the Bluefield 30 x 60 Minute Quadrangle from Lidar-Derived Elevation Models at 3-Meter Resolution Bathymetric and Topographic Surveys at Lucky Peak Lake Intake Structures, Boise County, Idaho, 2023 Terrestrial LIDAR Data Set of the February 14, 2019 Sausalito Boulevard Landslide, Sausalito, California Mores Creek Arm Bathymetric Survey, Lucky Peak Lake, Boise County, Idaho, May 11 - 13, 2021 U.S. Geological Survey and U.S. Army Corps of Engineers Bathymetric Survey of Lake Koocanusa, Lincoln County, Montana, 2016-2018 Beach topography of the Columbia River littoral cell, Washington and Oregon, 2019 Beach topography of the Columbia River littoral cell, Washington and Oregon, 2021 Beach topography and nearshore bathymetry of the Columbia River littoral cell, Washington and Oregon (ver. 4.0, January 2024) Enhanced Terrain Imagery of the Hagerstown 30 x 60 Minute Quadrangle from Lidar-Derived Elevation Models at 3-Meter Resolution (ver. 1.1, February 2024) Enhanced Terrain Imagery of the State College 30 x 60 Minute Quadrangle from Lidar-Derived Elevation Models at 3-Meter Resolution Enhanced Terrain Imagery of the Cumberland 30 x 60 Minute Quadrangle from Lidar-Derived Elevation Models at 3-Meter Resolution Enhanced Terrain Imagery of the Marlinton 30 x 60 Minute Quadrangle from Lidar-Derived Elevation Models at 3-Meter Resolution Enhanced Terrain Imagery of the Bluefield 30 x 60 Minute Quadrangle from Lidar-Derived Elevation Models at 3-Meter Resolution Enhanced Terrain Imagery of the Pittsburgh East 30 x 60 Minute Quadrangle from Lidar-Derived Elevation Models at 3-Meter Resolution Enhanced Terrain Imagery of the Johnstown 30 x 60 Minute Quadrangle from Lidar-Derived Elevation Models at 3-Meter Resolution Enhanced Terrain Imagery of the Lewisburg 30 x 60 Minute Quadrangle from Lidar-Derived Elevation Models at 3-Meter Resolution