Skip to main content
Advanced Search

Filters: Tags: {"scheme":"https://www.sciencebase.gov/vocab/category/WRET/CMS_Themes/CASC_CMS_Themes","name":"science tools for managers"} (X) > Tags: {"scheme":"https://www.sciencebase.gov/vocab/category/WRET/CMS_Themes/CASC_CMS_Themes","name":"drought, fire and extreme weather"} (X) > Date Range: {"choice":"year"} (X) > Categories: Project (X)

127 results (15ms)   

View Results as: JSON ATOM CSV
thumbnail
For the past few years, “king tides,” or the highest tides of the year, have been occurring more frequently and significantly affecting coastal environments across Hawaiʻi. Now, disappearing beaches and waves crashing over roadways are seemingly the “new normal.” In response, the state of Hawaiʻi is implementing adaptation strategies to combat tidal flooding in coastal areas. While flood management strategies are being implemented in urban areas, less is known about how tidal flooding, and associated inundation into surface and groundwater, might influence watershed dynamics and the native animals that depend on estuarine environments where freshwater meets the sea. Efforts for biocultural restoration of ecosystem...
thumbnail
Fire has always been a part of life in southern California. Climate change and current fire management practices have led to catastrophic losses and impacts to human health, infrastructure and ecosystems, as seen, for example, in the 2018 Montecito debris flow. Indigenous wisdom instructs that rather than suppressing fire, we should seek to be in good relationship with fire. This project centers the voices of Chumash people by revitalizing their good relationship with fire in Chumash homelands. This revitalization comes at a critical time for both fire management and revitalization of Indigenous cultural burning practices in the southwest. The project will enable the recovery and documenting of Chumash knowledge...
thumbnail
Climate change is causing an increase in the amount of forested area burned by wildfires in the western U.S. The warm, dry post-fire conditions of the region may limit tree regeneration in some areas, potentially causing a shift to non-forest vegetation. Managers are increasingly challenged by the combined impacts of greater wildfire activity, the significant uncertainty about whether forests will recover, and limited resources for reforestation efforts. Simultaneously, there has been an increased focus on post-fire reforestation efforts as tree planting has become a popular climate change mitigation strategy across the nation. Therefore, with increased interest and need, it is crucial to identify where varying...
thumbnail
Future climate conditions in the Upper Mississippi River Basin are projected to include many more extreme precipitation events. These intense periods of rain can lead to flooding of the Mississippi River itself, as well the small streams and rivers that feed it. This flooding presents a challenge for local communities, farmers, small businesses, river users, and the ecosystems and wildlife in the area. To reduce the damage done by these extreme rainfall events, ‘natural solutions’ are often helpful. This might include preserving forests and grasslands to absorb rainwater before it arrives at streams or restoring wetlands to slow and clean runoff water. For river and natural resource managers to adapt to future climate...
thumbnail
In the Western U.S., approximately 65% of the water supply comes from forested regions with most of the water that feeds local rivers coming from snowmelt that originates in mountain forests. The Rio Grande headwaters (I.e. the primary water generating region of the Rio Grande river) is experiencing large changes to the landscape primarily from forest fires and bark beetle infestations. Already, 85% of the coniferous forests in this region have been affected by the bark beetle, and projections indicate greater changes will occur as temperatures increase. In this area, most of the precipitation falls as snow in the winter, reaches a maximum depth in the late spring, and melts away due to warmer temperatures by early...
thumbnail
Wildfire, drought, and insects are reshaping forests in the Western United States in a manner that is being exacerbated by warming temperatures. Disturbance events such as these can significantly alter the amount of land that is covered by forest in an area or region. Consequently, changes in forest cover from disturbance can impact water runoff conditions leading to dangerous flooding, erosion, and water quality issues. These events can be costly for society. In response, many land managers are using forest thinning and prescribed burning practices to reduce disturbance impacts, especially those that are caused by high-severity wildfire. In contrast to the wealth of research on the advantages of forest thinning...
thumbnail
Drought is a common consequence of climate variability in the south-central U.S., but they are expected to occur more often and become more intense with climate change. Natural resource managers can improve their planning efforts with advance warnings of impending drought. Using input from resource managers in the Chickasaw Nation, this research team previously created models that forecast droughts up to 18 months in advance with information about their expected timing and intensity. Developed for all climate divisions in Louisiana, New Mexico, Oklahoma, and Texas, these drought models rely on input from predictor variables associated with global weather patterns like El Niño and La Niña. However, it is unclear...
thumbnail
As a low-lying coastal nation, the Republic of the Marshall Islands is at the forefront of exposure to climate change impacts. The Republic of the Marshall Islands has a strong dependence on natural resources and biodiversity not only for food and income but also for culture and livelihood. However, these resources are threatened by rising sea levels and associated coastal hazards (storm surges, saltwater intrusion, erosion, etc.). High-quality data for atoll ‘ridge to reef’ (land and ocean) areas are needed to provide remote communities with the tools and strategies to make adaptation efforts before disasters occur. Although the Republic of the Marshall Islands’ National Strategic Plans recognize the need to...
thumbnail
The South Central U.S. is one of the main agricultural regions in North America: annual agricultural production is valued at more than $44 billion dollars. However, as climate conditions change, the region is experiencing more frequent and severe droughts, with significant impacts on agriculture and broader consequences for land management. For example, in 2011 drought caused an estimated $7.6 billion in agricultural losses in Texas and an additional $1.6 billion in Oklahoma. Although there are many drought monitoring tools available, most of these tools were developed without input from the stakeholders, such as farmers and ranchers, who are intended to use them. The goal of this project was to assess the information...
thumbnail
The threat of droughts and their associated impacts on the landscape and human communities has long been recognized in the United States, especially in high risk areas such as the South Central region. There is ample literature on the effects of long-term climate change and short-term climate variability on the occurrence of droughts. However, it is unclear whether this information meets the needs of relevant stakeholders and actually contributes to reducing the vulnerability or increasing the resilience of communities to droughts. For example, are the methods used to characterize the severity of drought – known as drought indices – effective tools for predicting the actual damage felt by communities? As droughts...
thumbnail
National Wildlife Refuges (NWRs) along the East Coast of the United States protect habitat for a host of wildlife species, while also offering storm surge protection, improving water quality, supporting nurseries for commercially important fish and shellfish, and providing recreation opportunities for coastal communities. Yet in the last century, coastal ecosystems in the eastern U.S. have been severely altered by human development activities as well as sea-level rise and more frequent extreme events related to climate change. These influences threaten the ability of NWRs to protect our nation’s natural resources and to sustain their many beneficial services. Through this project, researchers are collaborating with...
thumbnail
In the northern Gulf of Mexico, mangrove forests have been expanding their northern range limits in parts of Texas, Louisiana, and north Florida since 1989. In response to warming winter temperatures, mangroves, which are dominant in warmer climates, are expected to continue migrating northward at the expense of salt marshes, which fare better in cooler climates. The ecological implications and timing of mangrove expansion is not well understood, and coastal wetland managers need information and tools that will enable them to identify and forecast the ecological impacts of this shift from salt marsh to mangrove-dominated coastal ecosystems. To address this need, researchers will host workshops and leverage existing...
thumbnail
The Pacific Ocean is home to a number of low-lying, coastal national parks and wildlife refuges. These public lands are situated on coral reef-lined islands that are susceptible to inundation from sea-level rise and flooding during storms. Because of their low-lying nature and limited availability of space, ecosystems, cultural resources, and infrastructure on these islands are particularly vulnerable to flooding. Sea-level rise will further exacerbate the impact of storms on island parks and refuges by increasing wave-driven coastal flooding, with consequences for ecological and human communities alike. However, most assessments of future conditions at coastal national parks and refuges consider only permanent...
thumbnail
Natural resource managers consistently identify invasive species as one of the biggest challenges for ecological adaptation to climate change. Yet climate change is often not considered during their management decision making. Given the many ways that invasive species and climate change will interact, such as changing fire regimes and facilitating the migration of high priority species, it is more critical than ever to integrate climate adaptation science and natural resource management. The coupling of climate adaptation and invasive species management remains limited by a lack of information, personnel, and funding. Those working on ecological adaptation to climate change have reported that information is not...
thumbnail
Water management in the middle portion of the Rio Grande Basin (between Elephant Butte Reservoir in New Mexico and Presidio, Texas) is challenging because water demand has continued to increase over time despite limited river water and dropping groundwater levels. While urban and agricultural users can cope with frequent droughts by using a combination of river water and pumping groundwater, little to no water reaches living river ecosystems in this region. Improving this situation requires a good understanding of river water and groundwater availability, now and in the future, as well as advantages and disadvantages of water management options to sustain these ecosystems. In particular, there is a need to determine...
thumbnail
Characterized by their extreme size, intensity, and severity, megafires are the most destructive, dangerous, and costly wildfires in the U.S. Over the past two decades, megafires have become more frequent in Oklahoma and Texas along with increasing extreme weather events and changes to fuel types caused by woody plant encroachment into grasslands. As climate change and woody plant encroachment are expected to continue or even accelerate, it is important to evaluate megafire risks and locate high-risk areas. This project will develop a new Megafire Risk Evaluation System (MERES) and make future projections of megafire probability in Oklahoma and Texas from 2024 to 2100. Outcomes and products from this project will...
thumbnail
The Rio Grande River is a critical source of freshwater for 13 million people in Colorado, Texas, New Mexico, and Mexico. More than half of the Rio Grande’s streamflow originates as snowmelt in Colorado’s mountains, meaning that changes in the amount of snowmelt can impact the water supply for communities along the entire river. Snowmelt runoff is therefore an important component of water supply outlooks for the region, which are used by a variety of stakeholders to anticipate water availability in the springtime. It is critical that these water supply outlooks be as accurate as possible. Errors can cost states millions of dollars due to mis-allocation of water and lost agricultural productivity. There is a perception...
thumbnail
Wildfires scorched 10 million acres across the United States in 2015, and for the first time on record, wildfire suppression costs topped $2 billion. Wildfire danger modeling is an important tool for understanding when and where wildfires will occur, and recent work by our team in the South Central United States has shown wildfire danger models may be improved by incorporating soil moisture information. Advancements in wildfire danger modeling may increase wildfire preparedness, and therefore decrease loss of life, property, and habitat due to wildfire. Still, soil moisture—an important determinant of wildfire risk—is not currently used for wildfire danger assessments because data are generally unavailable at the...
thumbnail
Haleakalā National Park (HNP) and the surrounding landscape spans many different land cover types, some of which are undergoing vegetation changes that can reduce the amount of water that infiltrates into soil. Decreased soil infiltration can lead to the erosion of terrestrial habitats, increases in the amount of sediment entering aquatic habitats, and flooding of downstream areas as runoff increases after storms. Currently, HNP managers are attempting to control runoff and erosion to avoid loss and damage within park boundaries and parks located downstream. Managers in HNP have expressed a need for information on current and future runoff and erosion risk to help prioritize management within the park and other...
thumbnail
American Samoa is vulnerable to sea-level rise in part due to the steep terrain of its islands. This terrain requires the majority of the islands’ villages and infrastructure to be located along thin strips of coastal land. The situation is worsened by the recently recognized rapid sinking of the islands, which was triggered by the 2009 Samoa earthquake and is predicted to last for decades. This subsidence is estimated to lead to roughly twice as much sea-level rise by 2060 as what is already predicted from climate change alone. As a result, the timeline of coastal impacts in American Samoa will be decades ahead of similar island communities in the Pacific. Despite this urgency, decision-makers in the region lack...


map background search result map search result map Community Resilience to Drought Hazard: An Analysis of Drought Exposure, Impacts, and Adaptation in the South Central U.S. Developing Effective Drought Monitoring Tools for Farmers and Ranchers in the South Central U.S. Climate Change Adaptation for Coastal National Wildlife Refuges Developing Tools for Improved Water Supply Forecasting in the Rio Grande Headwaters Wildfire Probability Mapping Based on Regional Soil Moisture Models Identifying the Risk of Runoff and Erosion in Hawaiʻi’s National Parks Identifying the Ecological and Management Implications of Mangrove Migration in the Northern Gulf of Mexico Understanding New Paradigms for “Environmental Flows” and Water Allocation in the Middle Rio Grande River Basin in a Changing Climate The Impact of Climate Change and Sea-Level Rise on Future Flooding of Coastal Parks and Refuges in Hawaiʻi and the U.S. Affiliated Pacific Islands Science to Inform Post-fire Conifer Regeneration and Reforestation Strategies Under Changing Climate Conditions Creating a North Central Regional Invasive Species and Climate Change (NC RISCC) Management Network Enhancing Stakeholder Capacity for Coastal Inundation Assessments in the Marshall Islands Sea-Level Rise Viewer for American Samoa: A Co-Developed Visualization and Planning Tool Estimating the Future Effects of Forest Disturbance on Snow Water Resources in a Changing Environment Effect of Extreme Tidal Events on Future Sea-Level Rise Scenarios for He‘eia Fish Communities undergoing Ahupua‘a Restoration Cycles of Renewal: Returning Good Fire to the Chumash Homelands Workshop: Natural Solutions to Ecological and Economic Problems Caused by Extreme Precipitation Events in the Upper Mississippi River Basin The Role of Forest Structure in Regulating Water Availability and Implications for Natural Resources and Ecosystem Function Megafire Risk Evaluation System (MERES) for the Southern Great Plains Improving Predictive Drought Models with Sensitivity Analysis Climate Change Adaptation for Coastal National Wildlife Refuges Sea-Level Rise Viewer for American Samoa: A Co-Developed Visualization and Planning Tool Cycles of Renewal: Returning Good Fire to the Chumash Homelands Understanding New Paradigms for “Environmental Flows” and Water Allocation in the Middle Rio Grande River Basin in a Changing Climate Improving Predictive Drought Models with Sensitivity Analysis The Role of Forest Structure in Regulating Water Availability and Implications for Natural Resources and Ecosystem Function Enhancing Stakeholder Capacity for Coastal Inundation Assessments in the Marshall Islands Workshop: Natural Solutions to Ecological and Economic Problems Caused by Extreme Precipitation Events in the Upper Mississippi River Basin Megafire Risk Evaluation System (MERES) for the Southern Great Plains Science to Inform Post-fire Conifer Regeneration and Reforestation Strategies Under Changing Climate Conditions Wildfire Probability Mapping Based on Regional Soil Moisture Models Identifying the Risk of Runoff and Erosion in Hawaiʻi’s National Parks Effect of Extreme Tidal Events on Future Sea-Level Rise Scenarios for He‘eia Fish Communities undergoing Ahupua‘a Restoration Community Resilience to Drought Hazard: An Analysis of Drought Exposure, Impacts, and Adaptation in the South Central U.S. Creating a North Central Regional Invasive Species and Climate Change (NC RISCC) Management Network Developing Effective Drought Monitoring Tools for Farmers and Ranchers in the South Central U.S. Identifying the Ecological and Management Implications of Mangrove Migration in the Northern Gulf of Mexico The Impact of Climate Change and Sea-Level Rise on Future Flooding of Coastal Parks and Refuges in Hawaiʻi and the U.S. Affiliated Pacific Islands