Skip to main content
Advanced Search

Filters: Tags: {"type":"USGS Scientific Topic Keyword","name":"geomorphology"} (X) > Date Range: {"choice":"year"} (X) > partyWithName: Pacific Coastal and Marine Science Center (X)

59 results (23ms)   

Filters
Date Types (for Date Range)
Extensions
Types
Contacts
Categories
Tags (with Type=USGS Scientific Topic Keyword )
View Results as: JSON ATOM CSV
thumbnail
An unmanned aerial system (UAS) was used to acquire high-resolution imagery of the intertidal zone at West Whidbey Island, Washington on June 4, 2019. This imagery was processed using structure-from-motion (SfM) photogrammetric techniques to derive a high-resolution digital surface model (DSM), orthomosaic imagery, and topographic point clouds. In order to maximize the extent of the subaerially exposed area, the survey was timed to coincide with a spring low tide occurring at approximately 18:02 Universal Coordinated Time (UTC) (11:02 Pacific Daylight Time (PDT)), with a predicted water level of -0.74 meters below mean lower-low water (MLLW) at the Sunset Beach NOAA subordinate tide station (station ID 9447951)....
thumbnail
This data release supersedes version 1, published in 2017 under https://doi.org/10.5066/F74M93HF. Please see Version_History_P9HG8UDS.txt below for more information. The San Clemente Dam, built in the 1920s on the Carmel River in Monterey County, California, was removed during 2014 and 2015. The dam-removal project was the largest in California to date, and one of the largest in the U.S. This USGS data release presents data collected before, during, and after the removal of the dam. The data were collected to study how the river channel's topographic profiles and sediment distributions changed in response to new sediment supply after dam removal and base-level changes in the former San Clemente reservoir sediment...
thumbnail
This dataset consists of physics-based Delft3D model and Delwaq model input files used in modeling sediment deposition and concentrations around the coral reefs of west Maui, Hawaii. The Delft3D models were used to simulate waves and currents under small (SC1) and large (‘SC2’) wave conditions for current stream discharge (‘Alt1’) and stream discharge with watershed restoration (‘Alt3’). Delft3D model results were subsequently used as forcing conditions for Delwaq models to simulate sediment transport and dispersion. The Delwaq models were used to simulate sediment transport and concentrations under the same two wave and stream discharge scenarios. The Delwaq models were run using forcing conditions generated by...
thumbnail
High-resolution acoustic backscatter data, bathymetry data, single channel minisparker seismic-reflection data were collected by the U.S. Geological Survey (USGS) and the Alaska Department of Fish and Game in May of 2014 southwest of Chenega Island and southwest of Montague Island, Alaska. Data were collected aboard the Alaska Department of Fish and Game vessel, R/V Solstice, during USGS field activity 2014-622-FA, using a pole mounted 100-kHz Reson 7111 multibeam echosounder, a 500 Joule SIG 2-mille minisparker sound source and a single channel streamer.
thumbnail
An unmanned aerial system (UAS) was used to acquire high-resolution imagery of the intertidal zone at Puget Creek and Dickman Mill Park in Tacoma, Washington on June 3, 2019. This imagery was processed using structure-from-motion (SfM) photogrammetric techniques to derive high-resolution digital surface models (DSM), orthomosaic imagery, and topographic point clouds. In order to maximize the extent of the subaerially exposed area, the survey was timed to coincide with a spring low tide occurring at approximately 18:36 Universal Coordinated Time (UTC) (11:36 Pacific Daylight Time (PDT)), with an observed water level of -1.47 meters relative to the NAVD88 vertical datum at the Tacoma NOAA tide station (station ID...
thumbnail
Two dams on the Elwha River, Washington State, USA trapped over 20 million m3 of sediment, reducing downstream sediment fluxes and contributing to erosion of the river's coastal delta. The removal of the Elwha and Glines Canyon dams between 2011 and 2014 induced massive increases in river sediment supply and provided an unprecedented opportunity to examine the response of a delta system to changes in sediment supply. The U.S. Geological Survey (USGS) developed an integrated research program aimed at understanding the ecosystem responses following dam removal. The research program included repeated surveys of beach topography, nearshore bathymetry, and surface sediment grain size to quantify changes in delta morphology...
Categories: Data; Tags: Geomorphology, Sedimentology
thumbnail
First release: Nov 2015 Revised: Jan 2016 (ver. 1a) Revised: Oct 2016 (ver. 1b) Revised: Jan 2017 (ver. 1c) Revised: Feb 2017 (ver. 1d) Revised: Apr 2017 (ver. 1e) Revised: Jun 2017 (ver. 1f) Revised: May 2018 (ver. 1g) The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal planners with critical storm-hazards information that can be used to increase public safety, mitigate physical...
thumbnail
An unoccupied aerial system (UAS) was used to acquire high-resolution imagery of the exposed reservoir delta at Los Padres Reservoir, in the Carmel River valley in central California on 1 November 2017. This survey followed sediment delivery to the reservoir by the Carmel River due to landscape response after the 2016 Soberanes Fire and high flows in winter 2017. The imagery from this survey was processed using structure-from-motion (SfM) photogrammetric techniques to derive a high-resolution digital surface model (DSM), a digital elevation model (DEM), an orthomosaic image, and a topographic point cloud. A total of six flights were conducted for the survey between 19:35 and 22:15 UTC (12:35 and 15:15 PDT). Only...
Categories: Data; Tags: Geomorphology, Remote Sensing
This dataset contains information on the probabilities of storm-induced erosion (collision, inundation and overwash) for each 100-meter (m) section of the United States Pacific coast for return period storm scenarios. The analysis is based on a storm-impact scaling model that uses observations of beach morphology combined with sophisticated hydrodynamic models to predict how the coast will respond to the hydrodynamic forcing. Storm-induced water levels, due to both surge and waves, are compared to coastal elevations to determine the probabilities of three types of coastal change: collision (dune erosion), overwash, and inundation. Data on morphology (dune crest and toe elevation) and hydrodynamics (storm surge,...
thumbnail
This data release supersedes version 1.0, published in November 2021 at https://doi.org/10.5066/P9CAZIHJ. Versioning details are documented in the accompanying Klamath_Grainsize_VersionHistory.txt file. This data release includes grain-size measurements of sediment samples collected from the substrate surface and uppermost 10 cm of sediment deposits in the Klamath estuary, northern California. Samples were collected using a BMH-60 bed-material sampler deployed from a boat, or by hand trowel from subaerial or shallow-water (less than 0.5 m water depth) regions along the estuary margins and side channels. Sediment grain size was analyzed at the U.S. Geological Survey (USGS) laboratory in Santa Cruz, Calif. Particles...
This data release provides flooding extent polygons and flood depth rasters (geotiffs) based on sea-level rise and wave-driven total water levels for the coast of the most populated Hawaiian, Mariana, and American Samoan Islands. Oceanographic, coastal engineering, ecologic, and geospatial data and tools were combined to evaluate the increased risks of storm-induced coastal flooding due to climate change and sea-level rise. We followed risk-based valuation approaches to map flooding due to waves and storm surge at 10 square meter resolution along these islands’ coastlines for annual (1-year), 20-year, and 100-year return-interval storm events and +0.25 m, +0.50 m, +1.00 m, +1.50 m, +2.00 m, and +3.00 m sea-level...
Categories: Data; Tags: CMHRP, Climate Change, Climatology, Coastal Processes, Coastal and Marine Hazards and Resources Program, All tags...
thumbnail
This data release provides the locations and certain key metrics of landslide features offshore southern California, including landslide perimeters, scarps, evacuation zones, debris aprons, and slide-prone areas in geographic information system (GIS) shapefile format. The offshore region of southern California is a tectonically active area that includes more than 20 fault-bounded basins and ridges that are subject to various types of mass-wasting and landslide processes. The collection of high-resolution seafloor mapping data offshore southern California, mostly within the last 25 years, provide a new data set that forms the basis for the identification and mapping of landslides and slide-related features throughout...
thumbnail
Sediment samples were collected from Los Padres reservoir in the Carmel River watershed, central California coast, between July 11 and 17, 2017, using a CME-45 barge-mounted drill rig, to characterize sedimentary properties in the reservoir deposits following the Soberanes Fire of 2016 and high river flows in winter 2017. Borehole samples were recovered using direct push coring with an Osterberg piston sampler operated by Taber Drilling Company of Sacramento, California, and overseen by AECOM, Inc. Sediment was recovered using a split-barrel sampler and a rotary drill bit was added to the sampler where needed to penetrate coarse sediment. Samples from four boreholes are described in this data release: three sampled...
thumbnail
In February 2016 the University of Washington in cooperation with the U.S. Geological Survey, Pacific Coastal and Marine Science Center (USGS, PCMSC) collected multibeam bathymetry and acoustic-backscatter data in and near the Catalina Basin, southern California aboard the University of Washington's Research Vessel Thomas G. Thompson. Data was collected using a Kongsberg EM300 multibeam echosounder hull-mounted to the 274-foot R/V Thomas G. Thompson. The USGS, PCMSC processed these data and produced a series of bathymetric surfaces and acoustic-backscatter images for scientific research purposes. This data release provides a 10-m resolution bathymetry surface and a 10-m resolution acoustic backscatter image. In...
thumbnail
This data set consists of physics-based Delft3D-FLOW and SWAN hydrodynamic models input files used to study the wave-induced 3D flow over spur-and-groove (SAG) formations. SAG are a common and impressive characteristic of coral reefs. They are composed of a series of submerged shore-normal coral ridges (spurs) separated by shore-normal patches of sediment (grooves) on the fore reef of coral reef environments. Although their existence and geometrical properties are well documented, the literature concerning the hydrodynamics around them is sparse. Here, the three-dimensional flow patterns over SAG formations, and a sensitivity of those patterns to waves, currents, and SAG geometry were examined. Shore-normal shoaling...
thumbnail
This data release provides bathymetric change grids of four geographic areas of San Francisco Bay, California, comparing digital elevation models (DEMs) created from bathymetric data collected in the 1970s and 1980s with DEMs created from bathymetric data collected in the 2010s and 2020. These types of change analyses can provide information on the quantities and patterns of erosion and deposition in San Francisco Bay over the 9 to 47 years between surveys, and they reveals that the bay floor lost about 34 million cubic meters of sediment between the intervening time period. Results from this study can be used to assess how San Francisco Bay has responded to changes in the system such as sea-level rise and variation...
thumbnail
A set of physics-based XBeach Non-hydrostatic hydrodynamic model simulations (with input files here included) were used to evaluate how varying carbonate budgets, and thus coral reef accretion and degradation, affect alongshore variations in wave-driven water levels along the adjacent shoreline of Buck Island Reef National Monument (BUIS) for a number of sea-level rise scenarios, specifically during extreme wave conditions when the risk for coastal flooding and the resulting impact to coastal communities is greatest. These input files accompany the modeling conducted for the following publication: Toth, L.T., Storlazzi, C.D., Kuffner, I.B., Quataert, E., Reyns, J., McCall, R.T., Stathakopoulos, A., Hillis-Starr,...
A process-based wave-resolving hydrodynamic model (XBeach Non-Hydrostatic, ‘XBNH’) was used to create a large synthetic database for use in a “Bayesian Estimator for Wave Attack in Reef Environments” (BEWARE), relating incident hydrodynamics and coral reef geomorphology to coastal flooding hazards on reef-lined coasts. Building on previous work, BEWARE improves system understanding of reef hydrodynamics by examining the intrinsic reef and extrinsic forcing factors controlling runup and flooding on reef-lined coasts. The Bayesian estimator has high predictive skill for the XBNH model outputs that are flooding indicators, and was validated for a number of available field cases. BEWARE is a potentially powerful tool...
thumbnail
This publication releases single-beam bathymetry and backscatter datasets acquired by the U.S. Geological Survey (USGS) during surveys performed on Floras Lake, Oregon, in June 2018. Bathymetry and backscatter data were collected using two personal watercraft (PWCs) equipped with single-beam sonar systems, sidescan sonar systems, and global navigation satellite system (GNSS) receivers. Bathymetry data are provided as point data in a comma-separated text file and are projected in cartesian coordinates using the Universal Transverse Mercator (UTM), Zone 10 North, meters coordinate system, with elevations relative to the NAVD88 vertical datum. Acoustic-backscatter data are provided as a GeoTIFF file also projected...
thumbnail
Schematic atoll models with varying theoretical morphologies were used to evaluate the relative control of individual morphological parameters on alongshore transport gradients. Here we present physics-based numerical SWAN model results of incident wave transformations for a range of atoll and island morphologies and sea-level rise scenarios. Model results are presented in NetCDF format, accompanied by a README text file that lists the parameters used in each model run. These data accompany the following publication: Shope, J.B., and Storlazzi, C.D., 2019, Assessing morphologic controls on atoll island alongshore sediment transport gradients due to future sea-level rise: Frontiers in Marine Science, doi:10.3389/fmars.2019.00245.


map background search result map search result map Coastal Storm Modeling System (CoSMoS) for Southern California, v3.0, Phase 2 Multibeam bathymetry and acoustic-backscatter data collected in 2016 in Catalina Basin, southern California and merged multibeam bathymetry datasets of the northern portion of the Southern California Continental Borderland Digital maps of submarine landslides and mass wasting features offshore of southern California Bathymetry and acoustic backscatter data from Floras Lake, Oregon, June 2018 Modeled extreme total water levels along the U.S. west coast Model parameter input files to compare the influence of coral reef carbonate budgets on alongshore variations in wave-driven total water levels on Buck Island Reef National Monument Model parameter input files to compare effects of stream discharge scenarios on sediment deposition and concentrations around coral reefs off west Maui, Hawaii Bathymetry, topography, and sediment grain-size data from the Elwha River delta, Washington, August 2022 Grain size and charcoal abundance in sediment samples from Los Padres reservoir, Carmel River watershed, California Sediment grain-size data from the Klamath estuary, California Grain size and charcoal abundance in sediment samples from Los Padres reservoir, Carmel River watershed, California Bathymetry and acoustic backscatter data from Floras Lake, Oregon, June 2018 Bathymetry, topography, and sediment grain-size data from the Elwha River delta, Washington, August 2022 Model parameter input files to compare the influence of coral reef carbonate budgets on alongshore variations in wave-driven total water levels on Buck Island Reef National Monument Sediment grain-size data from the Klamath estuary, California Model parameter input files to compare effects of stream discharge scenarios on sediment deposition and concentrations around coral reefs off west Maui, Hawaii Multibeam bathymetry and acoustic-backscatter data collected in 2016 in Catalina Basin, southern California and merged multibeam bathymetry datasets of the northern portion of the Southern California Continental Borderland Digital maps of submarine landslides and mass wasting features offshore of southern California Coastal Storm Modeling System (CoSMoS) for Southern California, v3.0, Phase 2 Modeled extreme total water levels along the U.S. west coast