Skip to main content
Advanced Search

Filters: Tags: Spatial analysis (X) > Types: OGC WMS Layer (X) > partyWithName: U.S. Geological Survey - ScienceBase (X)

19 results (20ms)   

View Results as: JSON ATOM CSV
thumbnail
This part of the Data Release contains the raster representation of the water-level altitude and water-level change maps developed every 5 years from 1980-2015 for the upper Rio Grande Focus Area Study. The input point data used to generate the water-level altitude maps can be found in the "Groundwater level measurement data used to develop water-level altitude maps in the upper Rio Grande Alluvial Basins" child item of this data release. These digital data accompany Houston, N.A., Thomas, J.V., Foster, L.K., Pedraza, D.E., and Welborn, T.L., 2020, Hydrogeologic framework, groundwater-level altitudes, groundwater-level changes, and groundwater-storage changes in selected alluvial basins of the upper Rio Grande...
Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: Abiquiu Reservoir, Ahumada, Alamosa, Alamosa County, Alamosa Creek, All tags...
thumbnail
In 2004, about 90 migrating elk drowned after attempting to cross thin ice on the Mores Creek arm of Lucky Peak Lake upstream of the Highway 21 bridge. To better understand the depths over a range of reservoir pool elevations in the Mores Creek Arm, the U.S. Geological Survey, in cooperation with the Lucky Peak Power Plant Project, conducted high-resolution multibeam echosounder (MBES) bathymetric surveys on the Mores Creek arm on Lucky Peak Lake. The MBES data will assist reservoir managers and wildlife biologists with regulating reservoir water surface elevations (WSE) to support successful big game migration across Mores Creek on Lucky Peak Lake. Data collection provided nearly 100 percent coverage of bed elevations...
The U.S. Geological Survey's (USGS) SPAtially Referenced Regression On Watershed attributes (SPARROW) model was used to aid in the interpretation of monitoring data and simulate streamflow and water-quality conditions in streams across the Southwestern Region of the Unites States. SPARROW is a hybrid empirical/process-based mass balance model that can be used to estimate the major sources and environmental factors that affect the long-term supply, transport, and fate of contaminants in streams. The spatially explicit model structure is defined by a river reach network coupled with contributing catchments. The model is calibrated by statistically relating watershed sources and transport-related properties to monitoring-based...
thumbnail
In 2016, the U.S. Army Corps of Engineers (USACE) started collecting high-resolution multibeam echosounder (MBES) data on Lake Koocanusa. The survey originated near the International Boundary (River Mile (RM) 271.0) and extended down the reservoir, hereinafter referred to as downstream, about 1.4 miles downstream of the Montana 37 Highway Bridge near Boulder Creek (about RM 253). USACE continued the survey in 2017, completing a reach that extended from about RM 253 downstream to near Tweed Creek (RM 244.5). In 2018, the U.S. Geological Survey (USGS) Idaho Water Science Center completed the remaining portion of the reservoir from RM 244.5 downstream to Libby Dam (RM 219.9). The MBES data collected in 2016 and 2017...
thumbnail
In 2004, about 90 migrating elk drowned after attempting to cross thin ice on the Mores Creek arm of Lucky Peak Lake upstream of the Highway 21 bridge. To better understand the depths over a range of reservoir pool elevations in the Mores Creek Arm, the U.S. Geological Survey, in cooperation with the Lucky Peak Power Plant Project, conducted high-resolution multibeam echosounder (MBES) bathymetric surveys on the Mores Creek arm on Lucky Peak Lake. The MBES data will assist reservoir managers and wildlife biologists with regulating reservoir water surface elevations (WSE) to support successful big game migration across Mores Creek on Lucky Peak Lake. Data collection provided nearly 100 percent coverage of bed elevations...
thumbnail
Consumptive use (CU) of water is an important factor for determining water availability and groundwater storage. Many regional stakeholders and water-supply managers in the Upper Rio Grande Basin have indicated CU is of primary concern in their water-management strategies, yet CU data is sparse for this area. This polygon feature class, which represents irrigated acres for 2015, is a geospatial component of the U.S. Geological Survey National Water Census Upper Rio Grande Basin (URGB) focus area study's effort to improve quantification of CU in parts of New Mexico, west Texas, and northern Chihuahua. These digital data accompany Ivahnenko, T.I., Flickinger, A.K., Galanter, A.E., Douglas-Mankin, K.R., Pedraza, D.E.,...
Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: Abiquiu Reservoir, Ahumada, Alamosa, Alamosa County, Alamosa Creek, All tags...
thumbnail
The U.S. Geological Survey, in cooperation with the California Department of Water Resources (DWR), has constructed a new spatially distributed Precipitation-Runoff Modeling System (PRMS) for the Merced River Basin (Koczot and others, 2021), which is a tributary of the San Joaquin River in California. PRMS is a deterministic, distributed-parameter, physical-process-based modeling system developed to evaluate the response of streamflow and basin hydrology to various combinations of climate and land use (Markstrom and others, 2015). Although further refinement may be required to apply the Merced PRMS for official streamflow forecast operations, this application of PRMS is calibrated with intention to simulate (and...
Categories: Data; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service, Shapefile; Tags: California, Climate, Climatology, Draper Climate-Distribution Software (Draper), Geography, All tags...
thumbnail
In 2016, the U.S. Army Corps of Engineers (USACE) started collecting high-resolution multibeam echosounder (MBES) data on Lake Koocanusa. The survey originated near the International Boundary (River Mile (RM) 271.0) and extended down the reservoir, hereinafter referred to as downstream, about 1.4 miles downstream of the Montana 37 Highway Bridge near Boulder Creek (about RM 253). USACE continued the survey in 2017, completing a reach that extended from about RM 253 downstream to near Tweed Creek (RM 244.5). In 2018, the U.S. Geological Survey (USGS) Idaho Water Science Center completed the remaining portion of the reservoir from RM 244.5 downstream to Libby Dam (RM 219.9). The MBES data collected in 2016 and 2017...
thumbnail
This dataset contains data used in the associated publication in the International Journal of Remote Sensing. The geodatabase contains four feature classes: AOI, MajorZone, MinorZone, and Green2007. Publication can be found at https://doi.org/10.1080/01431161.2018.1437297. Publication abstract: Watershed restoration efforts seek to rejuvenate vegetation, biological diversity, and land productivity at Cienega San Bernardino, an important wetland in southeastern Arizona and northern Sonora, Mexico. Rock detention and earthen berm structures were built on the Cienega San Bernardino over the course of four decades, beginning in 1984 and continuing to the present. Previous research findings show that restoration supports...
thumbnail
Urban growth and climate change together complicate planning efforts meant to adapt to increasingly scarce water supplies. Several studies have shown the impacts of urban planning and climate change separately, but little attention has been given to their combined impact on long-term urban water demand forecasting. Here we coupled land and climate change projections with empirically-derived coefficient estimates of urban water use (sum of public supply, industrial, and domestic use) to forecast water demand under scenarios of future population densities and climate warming. We simulated two scenarios of urban growth from 2012 to 2065 using the FUTure Urban-Regional Environment Simulation (FUTURES) framework. FUTURES...
thumbnail
Alluvial basin boundaries in the Upper Rio Grande Basin (URGB) were a needed dataset for the groundwater component of the URGB Focus Area Study (FAS). A literature and data search revealed not all of the alluvial fill basins existed in a digital format that could be imported and used in a Geographic Information System (GIS). Available resources such as georeferenced report figures, digital elevation models (DEMs), principal aquifer dataset, surficial geology, and structural features, such as faults, were used to aid in defining the alluvial basin boundaries. An Esri ArcGIS geodatabase was created to house the final digitized dataset of the following alluvial basins: San Luis, Espanola, Socorro, La Jencia, San Marcial,...
Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: Abiquiu Reservoir, Ahumada, Alamosa, Alamosa, Alamosa County, All tags...
thumbnail
This part of the data release contains the water-level measurement data compiled and synthesized from various sources. This collection includes two tables that contain all the water-level measurements that were considered to develop the water-level altitude maps (Input_VisGWDB), and a table of median water-level data that were used to develop the water-level altitude maps (MedianWaterLevelData). These digital data accompany Houston, N.A., Thomas, J.V., Foster, L.K., Pedraza, D.E., and Welborn, T.L., 2020, Hydrogeologic framework, groundwater-level Altitudes, groundwater-level changes, and groundwater-storage changes in selected alluvial basins of the upper Rio Grande Focus Area Study, Colorado, New Mexico, and...
Categories: Data; Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: Abiquiu Reservoir, Ahumada, Alamosa, Alamosa County, Alamosa Creek, All tags...
thumbnail
The U.S. Geological Survey’s SPAtially Referenced Regression On Watershed attributes (SPARROW) for the Southeastern United States was used to simulate changes in total nitrogen, total phosphorus and suspended sediment load in streams under two scenarios: (1) where all forests are urbanized and (2) where all forests are urbanized and runoff is adjusted based on a non-forested landscape. This data release includes model input not published with the original model and used for scenario simulations, and model output for total nitrogen, total phosphorus, and suspended sediment under baseline conditions, scenario (1), and scenario (2). Original model input, output, and shapefiles are available (Roland and Hoos, 2020,...
thumbnail
In 2016, the U.S. Army Corps of Engineers (USACE) started collecting high-resolution multibeam echosounder (MBES) data on Lake Koocanusa. The survey originated near the International Boundary (River Mile (RM) 271.0) and extended down the reservoir, hereinafter referred to as downstream, about 1.4 miles downstream of the Montana 37 Highway Bridge near Boulder Creek (about RM 253). USACE continued the survey in 2017, completing a reach that extended from about RM 253 downstream to near Tweed Creek (RM 244.5). In 2018, the U.S. Geological Survey (USGS) Idaho Water Science Center completed the remaining portion of the reservoir from RM 244.5 downstream to Libby Dam (RM 219.9). The MBES data collected in 2016 and 2017...
thumbnail
In 2004, about 90 migrating elk drowned after attempting to cross thin ice on the Mores Creek arm of Lucky Peak Lake upstream of the Highway 21 bridge. To better understand the depths over a range of reservoir pool elevations in the Mores Creek Arm, the U.S. Geological Survey, in cooperation with the Lucky Peak Power Plant Project, conducted high-resolution multibeam echosounder (MBES) bathymetric surveys on the Mores Creek arm on Lucky Peak Lake. The MBES data will assist reservoir managers and wildlife biologists with regulating reservoir water surface elevations (WSE) to support successful big game migration across Mores Creek on Lucky Peak Lake. Data collection provided nearly 100 percent coverage of bed elevations...
thumbnail
In 2004, about 90 migrating elk drowned after attempting to cross thin ice on the Mores Creek arm of Lucky Peak Lake upstream of the Highway 21 bridge. To better understand the depths over a range of reservoir pool elevations in the Mores Creek Arm, the U.S. Geological Survey, in cooperation with the Lucky Peak Power Plant Project, conducted high-resolution multibeam echosounder (MBES) bathymetric surveys on the Mores Creek arm on Lucky Peak Lake. The MBES data will assist reservoir managers and wildlife biologists with regulating reservoir water surface elevations (WSE) to support successful big game migration across Mores Creek on Lucky Peak Lake. Data collection provided nearly 100 percent coverage of bed elevations...
thumbnail
In 2016, the U.S. Army Corps of Engineers (USACE) started collecting high-resolution multibeam echosounder (MBES) data on Lake Koocanusa. The survey originated near the International Boundary (River Mile (RM) 271.0) and extended down the reservoir, hereinafter referred to as downstream, about 1.4 miles downstream of the Montana 37 Highway Bridge near Boulder Creek (about RM 253). USACE continued the survey in 2017, completing a reach that extended from about RM 253 downstream to near Tweed Creek (RM 244.5). In 2018, the U.S. Geological Survey (USGS) Idaho Water Science Center completed the remaining portion of the reservoir from RM 244.5 downstream to Libby Dam (RM 219.9). The MBES data collected in 2016 and 2017...
thumbnail
Artificial drainage has major ecosystem impacts through the development of extensive ditch networks that reduce storage and induce large-scale vegetation changes. This has been a widespread practice of water table management for agriculture in Eastern North Carolina. However, these features are challenging to identify, and (because of their structure) have been determined by non-natural factors. A dataset of open ditches was processed by calculating terrain openness (also called positive openness): a value based on a line-of-sight approach to measure the surrounding eight zenith angles as viewed above the landscape surface. The result from calculating openness with high resolution digital elevation models (DEMs...
thumbnail
This Data Release contains various types of hydrologic and geologic data from the Upper Rio Grande Focus Area Study from 1921-2017, including groundwater-level measurement data compiled and synthesized from various sources, water-level altitude and water-level change maps developed from the water-level measurement data every 5 years from 1980-2015, and the horizontal extent of 13 alluvial basins in the Upper Rio Grande Basin
Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: Abiquiu Reservoir, Ahumada, Alamosa, Alamosa County, Alamosa Creek, All tags...


    map background search result map search result map Hydrogeologic, geologic, and water-level data for the groundwater component of the upper Rio Grande Focus Area Study, Colorado, New Mexico, and Texas, United States and Chihuahua, Mexico 2017 Alluvial basin boundary data associated with the hydrogeologic, geologic, and water-level data for the groundwater component of the upper Rio Grande Focus Area Study, Colorado, New Mexico, and Texas, United States and Chihuahua, Mexico 2017 Data Release for Analysis of Vegetation Recovery Surrounding a Restored Wetland using the Normalized Difference Infrared Index (NDII) and Normalized Difference Vegetation Index (NDVI) Archive of Merced River Basin Precipitation-Runoff Modeling System, with forecasting, climate-file preparation, and data-visualization tools 2015 Irrigated acres feature class for the Upper Rio Grande Basin, New Mexico and Texas, United States and Chihuahua, Mexico Land-use and water demand projections (2012 to 2065) under different scenarios of environmental change for North Carolina, South Carolina, and coastal Georgia Groundwater-level altitude and groundwater-level change maps developed for the groundwater component of the upper Rio Grande Focus Area Study Groundwater-level measurement data used to develop water-level altitude maps in the upper Rio Grande alluvial basins U.S. Geological Survey and U.S. Army Corps of Engineers Bathymetric Survey of Lake Koocanusa, Lincoln County, Montana, 2016-2018 U.S. Geological Survey and U.S. Army Corps of Engineers Bathymetric Survey of Lake Koocanusa, Lincoln County, Montana, 2016—2018 Lake Koocanusa Maximum and Minimum Pool Elevation Contours, Lincoln County, Montana Lake Koocanusa Digital Elevation Model (DEM), Lincoln County, Montana SPARROW model inputs and simulated streamflow, nutrient and suspended-sediment loads in streams of the Southwestern United States, 2012 Base Year (ver. 2.0, October 2020) SPARROW Model Simulated Nutrient and Suspended Sediment Loads in Streams when All Forests are Urbanized Across the Southeastern United States Mores Creek Arm Bathymetric Survey, Lucky Peak Lake, Boise County, Idaho, May 11 - 13, 2021 Mores Creek Arm Bathymetric Survey - Depth Contours, Lucky Peak Lake, Boise County, Idaho, May 11 - 13, 2021 Mores Creek Arm Bathymetric Survey - Depth DEM, Lucky Peak Lake, Boise County, Idaho, May 11 - 13, 2021 Mores Creek Arm Bathymetric Survey - Elevation DEM, Lucky Peak Lake, Boise County, Idaho, May 11 - 13, 2021 Lidar-Derived Ditches in Eastern North Carolina with Transportation attributes, 2014-2015 Mores Creek Arm Bathymetric Survey, Lucky Peak Lake, Boise County, Idaho, May 11 - 13, 2021 Mores Creek Arm Bathymetric Survey - Depth Contours, Lucky Peak Lake, Boise County, Idaho, May 11 - 13, 2021 Mores Creek Arm Bathymetric Survey - Depth DEM, Lucky Peak Lake, Boise County, Idaho, May 11 - 13, 2021 Mores Creek Arm Bathymetric Survey - Elevation DEM, Lucky Peak Lake, Boise County, Idaho, May 11 - 13, 2021 Data Release for Analysis of Vegetation Recovery Surrounding a Restored Wetland using the Normalized Difference Infrared Index (NDII) and Normalized Difference Vegetation Index (NDVI) U.S. Geological Survey and U.S. Army Corps of Engineers Bathymetric Survey of Lake Koocanusa, Lincoln County, Montana, 2016—2018 U.S. Geological Survey and U.S. Army Corps of Engineers Bathymetric Survey of Lake Koocanusa, Lincoln County, Montana, 2016-2018 Lake Koocanusa Digital Elevation Model (DEM), Lincoln County, Montana Lake Koocanusa Maximum and Minimum Pool Elevation Contours, Lincoln County, Montana Archive of Merced River Basin Precipitation-Runoff Modeling System, with forecasting, climate-file preparation, and data-visualization tools Lidar-Derived Ditches in Eastern North Carolina with Transportation attributes, 2014-2015 Hydrogeologic, geologic, and water-level data for the groundwater component of the upper Rio Grande Focus Area Study, Colorado, New Mexico, and Texas, United States and Chihuahua, Mexico 2017 Groundwater-level altitude and groundwater-level change maps developed for the groundwater component of the upper Rio Grande Focus Area Study Alluvial basin boundary data associated with the hydrogeologic, geologic, and water-level data for the groundwater component of the upper Rio Grande Focus Area Study, Colorado, New Mexico, and Texas, United States and Chihuahua, Mexico 2017 Groundwater-level measurement data used to develop water-level altitude maps in the upper Rio Grande alluvial basins 2015 Irrigated acres feature class for the Upper Rio Grande Basin, New Mexico and Texas, United States and Chihuahua, Mexico Land-use and water demand projections (2012 to 2065) under different scenarios of environmental change for North Carolina, South Carolina, and coastal Georgia SPARROW Model Simulated Nutrient and Suspended Sediment Loads in Streams when All Forests are Urbanized Across the Southeastern United States SPARROW model inputs and simulated streamflow, nutrient and suspended-sediment loads in streams of the Southwestern United States, 2012 Base Year (ver. 2.0, October 2020)