Skip to main content
Advanced Search

Filters: Tags: Wildfire (X) > Types: Downloadable (X)

191 results (65ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
This dataset is a raster of predicted suitable bioclimate using statistical correlations between known habitat and current climate (1950-1999 average) , and then projecting that niche into the future. The future timeslices used are 2020's, which is an average of 2020-2029, and 2050's which is 2050-2059. The Values 1-6 show the degree of model agreement (For example: areas with a value of 1 is where only 1 GCM predicted suitability; pixels with a value of 6 are where 6 GCMs predicted suitability, ect). *see Maxent output pdfs for more details about model inputs and settings.
thumbnail
This dataset is a raster of predicted suitable bioclimate using statistical correlations between known habitat and current climate (1950-1999 average) , and then projecting that niche into the future. The future timeslices used are 2020's, which is an average of 2020-2029, and 2050's which is 2050-2059. The Values 1-6 show the degree of model agreement (For example: areas with a value of 1 is where only 1 GCM predicted suitability; pixels with a value of 6 are where 6 GCMs predicted suitability, ect). *see Maxent output pdfs for more details about model inputs and settings.
thumbnail
This dataset is a raster of predicted suitable bioclimate using statistical correlations between known habitat and current climate (1950-1999 average) , and then projecting that niche into the future. The future timeslices used are 2020's, which is an average of 2020-2029, and 2050's which is 2050-2059. The Values 1-6 show the degree of model agreement (For example: areas with a value of 1 is where only 1 GCM predicted suitability; pixels with a value of 6 are where 6 GCMs predicted suitability, ect). *see Maxent output pdfs for more details about model inputs and settings.
thumbnail
This dataset is a raster of predicted suitable bioclimate using statistical correlations between known habitat and current climate (1950-1999 average) , and then projecting that niche into the future. The future timeslices used are 2020's, which is an average of 2020-2029, and 2050's which is 2050-2059. The Values 1-6 show the degree of model agreement (For example: areas with a value of 1 is where only 1 GCM predicted suitability; pixels with a value of 6 are where 6 GCMs predicted suitability, ect). *see Maxent output pdfs for more details about model inputs and settings.
thumbnail
This dataset is a raster of predicted suitable bioclimate using statistical correlations between known habitat and current climate (1950-1999 average) , and then projecting that niche into the future. The future timeslices used are 2020's, which is an average of 2020-2029, and 2050's which is 2050-2059. The Values 1-6 show the degree of model agreement (For example: areas with a value of 1 is where only 1 GCM predicted suitability; pixels with a value of 6 are where 6 GCMs predicted suitability, ect). *see Maxent output pdfs for more details about model inputs and settings.
thumbnail
This dataset is a raster of predicted suitable bioclimate using statistical correlations between known habitat and current climate (1950-1999 average) , and then projecting that niche into the future. The future timeslices used are 2020's, which is an average of 2020-2029, and 2050's which is 2050-2059. The Values 1-6 show the degree of model agreement (For example: areas with a value of 1 is where only 1 GCM predicted suitability; pixels with a value of 6 are where 6 GCMs predicted suitability, ect). *see Maxent output pdfs for more details about model inputs and settings.
thumbnail
The Monitoring Trends in Burn Severity (MTBS) project assesses the frequency, extent, and magnitude (size and severity) of all large wildland fires (includes wildfire, wildland fire use, and prescribed fire) in the conterminous United States (CONUS), Alaska, Hawaii, and Puerto Rico for the period of 1984 through 2010. All fires reported as greater than 1,000 acres in the western U.S. and greater than 500 acres in the eastern U.S. are mapped across all ownerships. MTBS produces a series of geospatial and tabular data for analysis at a range of spatial, temporal, and thematic scales and are intended to meet a variety of information needs that require consistent data about fire effects through space and time. This...
thumbnail
The Monitoring Trends in Burn Severity (MTBS) project assesses the frequency, extent, and magnitude (size and severity) of all large fires (includes wildfire, wildland fire use, and prescribed fire) in the conterminous United States (CONUS), Alaska, Hawaii, and Puerto Rico for the period of 1984 through 2011. All fires reported as greater than 1,000 acres in the western U.S. and greater than 500 acres in the eastern U.S. are mapped across all ownerships. MTBS produces a series of geospatial and tabular data for analysis at a range of spatial, temporal, and thematic scales and are intended to meet a variety of information needs that require consistent data about fire effects through space and time. This map layer...
thumbnail
The Monitoring Trends in Burn Severity (MTBS) project assesses the frequency, extent, and magnitude (size and severity) of all large fires (includes wildfire, wildland fire use, and prescribed fire) in the conterminous United States (CONUS), Alaska, Hawaii, and Puerto Rico for the period of 1984 through 2011. All fires reported as greater than 1,000 acres in the western U.S. and greater than 500 acres in the eastern U.S. are mapped across all ownerships. MTBS produces a series of geospatial and tabular data for analysis at a range of spatial, temporal, and thematic scales and are intended to meet a variety of information needs that require consistent data about fire effects through space and time. This map layer...
thumbnail
The Monitoring Trends in Burn Severity (MTBS) project assesses the frequency, extent, and magnitude (size and severity) of all large fires (includes wildfire, wildland fire use, and prescribed fire) in the conterminous United States (CONUS), Alaska, Hawaii, and Puerto Rico for the period of 1984 through 2011. All fires reported as greater than 1,000 acres in the western U.S. and greater than 500 acres in the eastern U.S. are mapped across all ownerships. MTBS produces a series of geospatial and tabular data for analysis at a range of spatial, temporal, and thematic scales and are intended to meet a variety of information needs that require consistent data about fire effects through space and time. This map layer...
thumbnail
The Monitoring Trends in Burn Severity (MTBS) project assesses the frequency, extent, and magnitude (size and severity) of all large fires (includes wildfire, wildland fire use, and prescribed fire) in the conterminous United States (CONUS), Alaska, Hawaii, and Puerto Rico for the period of 1984 through 2011. All fires reported as greater than 1,000 acres in the western U.S. and greater than 500 acres in the eastern U.S. are mapped across all ownerships. MTBS produces a series of geospatial and tabular data for analysis at a range of spatial, temporal, and thematic scales and are intended to meet a variety of information needs that require consistent data about fire effects through space and time. This map layer...
thumbnail
The Monitoring Trends in Burn Severity (MTBS) project assesses the frequency, extent, and magnitude (size and severity) of all large wildland fires (includes wildfire, wildland fire use, and prescribed fire) in the conterminous United States (CONUS), Alaska, Hawaii, and Puerto Rico for the period of 1984 through 2010. All fires reported as greater than 1,000 acres in the western U.S. and greater than 500 acres in the eastern U.S. are mapped across all ownerships. MTBS produces a series of geospatial and tabular data for analysis at a range of spatial, temporal, and thematic scales and are intended to meet a variety of information needs that require consistent data about fire effects through space and time. This...
thumbnail
The FSim burn probability was used to determine the burn probability of the white sturgeon range in the ecoregion. This layer was used to examine wildfire risk to areas within the white sturgeon range.
thumbnail
Burn probability (BP) raster dataset predicted for the 2080-2100 period in the Rio Grande area was generated using: 1) data developed from the 2014 Fire Program Analysis (FPA) system; 2) geospatial Fire Simulation (FSim) system developed by the US Forest Service Missoula Fire Sciences Laboratory to estimate probabilistic components of wildfire risk (Finney et al. 2011); and 3) climate predictions developed using the Multivariate Adaptive Constructed Analogs (MACA) method (Abatzoglou and Brown 2011) which downscaled model output from the GFDL-ESM-2m global climate model of the Coupled Model Inter-Comparison Project 5 for the 8.5 Representative Concentration Pathway.
thumbnail
Burn probability (BP) for Fireline Intensity Class 6 (FIL6) with flame lengths in the range of 3.7-15 m predicted for the 2080-2100 period in the Rio Grande area. This raster dataset was generated using: 1) data developed from the 2014 Fire Program Analysis (FPA) system; 2) geospatial Fire Simulation (FSim) system developed by the US Forest Service Missoula Fire Sciences Laboratory to estimate probabilistic components of wildfire risk (Finney et al. 2011); and 3) climate predictions developed using the Multivariate Adaptive Constructed Analogs (MACA) method (Abatzoglou and Brown 2011) which downscaled model output from the GFDL-ESM-2m global climate model of the Coupled Model Inter-Comparison Project 5 for the 8.5...
thumbnail
Burn probability (BP) for Fireline Intensity Class 2 (FIL2) with flame lengths in the range of 0.6-1.2 m predicted for the 2050-2070 period in the Rio Grande area. This raster dataset was generated using: 1) data developed from the 2014 Fire Program Analysis (FPA) system; 2) geospatial Fire Simulation (FSim) system developed by the US Forest Service Missoula Fire Sciences Laboratory to estimate probabilistic components of wildfire risk (Finney et al. 2011); and 3) climate predictions developed using the Multivariate Adaptive Constructed Analogs (MACA) method (Abatzoglou and Brown 2011) which downscaled model output from the GFDL-ESM-2m global climate model of the Coupled Model Inter-Comparison Project 5 for the...
thumbnail
Burn probability (BP) for Fireline Intensity Class 5 (FIL5) with flame lengths in the range of 2.4-3.7 m predicted for the 2080-2100 period in the Rio Grande area. This raster dataset was generated using: 1) data developed from the 2014 Fire Program Analysis (FPA) system; 2) geospatial Fire Simulation (FSim) system developed by the US Forest Service Missoula Fire Sciences Laboratory to estimate probabilistic components of wildfire risk (Finney et al. 2011); and 3) climate predictions developed using the Multivariate Adaptive Constructed Analogs (MACA) method (Abatzoglou and Brown 2011) which downscaled model output from the GFDL-ESM-2m global climate model of the Coupled Model Inter-Comparison Project 5 for the...
thumbnail
Burn probability (BP) for Fireline Intensity Class 4 (FIL4) with flame lengths in the range of 1.8-2.4 m predicted for the 2050-2070 period in the Rio Grande area. This raster dataset was generated using: 1) data developed from the 2014 Fire Program Analysis (FPA) system; 2) geospatial Fire Simulation (FSim) system developed by the US Forest Service Missoula Fire Sciences Laboratory to estimate probabilistic components of wildfire risk (Finney et al. 2011); and 3) climate predictions developed using the Multivariate Adaptive Constructed Analogs (MACA) method (Abatzoglou and Brown 2011) which downscaled model output from the GFDL-ESM-2m global climate model of the Coupled Model Inter-Comparison Project 5 for the...
thumbnail
Wildfire and fuel treatment locations for the USFWS Pacific Southwest Region (California, Nevada, Klamath Basin OR) extracted from the Fire Management Information System (FMIS) on October 23, 2015, for fiscal years 1980-2015.
thumbnail
This dataset is a raster of predicted suitable bioclimate using statistical correlations between known habitat and current climate (1950-1999 average) , and then projecting that niche into the future. The future timeslices used are 2020's, which is an average of 2020-2029, and 2050's which is 2050-2059. The Values 1-6 show the degree of model agreement (For example: areas with a value of 1 is where only 1 GCM predicted suitability; pixels with a value of 6 are where 6 GCMs predicted suitability, ect). *see Maxent output pdfs for more details about model inputs and settings.